The Taylor Series

- FOR YOUR NOTEBOOK!
 \[y(t + \Delta t) = y(t) + \Delta t \frac{dy}{dt}(t) + \frac{\Delta t^2}{2!} \frac{d^2y}{dt^2}(t) + \frac{\Delta t^3}{3!} \frac{d^3y}{dt^3}(t) + \cdots \]

- Get the following... for the 0th through 5th order.
 \[t_0 = 1, \quad \Delta t = 2 \quad y(3) = ? \]

- Answer: 1, 7, 19, 27, 27, 27.....

Lecture 4:
A little more Math & Stella Orientation (Intro)

- Exponentials Recap
- Stella Tutorial

The Exponential

- The "exponential"
 - e
 - 2.71828

- \(\int \frac{dx}{x} = \ln x + C = \log_e x + C \)

- \(e^{\ln x} = x \)

- \(\frac{d}{dx} e^{u(x)} = e^{u(x)} \frac{d}{dx} u(x) \)

Agenda

- Why we use "e" in analytic solutions.

- We’ll be doing the online help to guide our way through the Stella Interface.

The Exponential

- The exponential serves to represent a number of physical processes that also satisfy many of the differential equations our problems generate.
 - Exponential Growth
 - Exponential Decay
 - Select Oscillations Processes
24 Jan 2007

ATM 515: Intro Env Modeling

24 Jan 2007 ATM 515: Intro Env Modeling : Stella Orientation (Intro)

The Exponential (2.71828)

- Exponential Growth
 \[y(t) = e^{At} \]
 \[\frac{dy}{dt} = A e^{At} \]
 \[\frac{dy}{dt} = Ay \]

- Exponential Decay
 \[y(t) = e^{-At} \]
 \[\frac{dy}{dt} = -A e^{-At} \]
 \[\frac{dy}{dt} = -Ay \]

Let’s do that again….

- Exponential Growth
 \[y(t) = b e^{at} \]
 \[\frac{dy}{dt} = b a e^{at} \]
 \[\frac{dy}{dt} = ay \]

The Exponential (2.71828)

Oscillations (Euler’s Formula)

\[e^x = \cos(x) + i \sin(x) \]

\[\frac{d^2}{dt^2} U_{ag} = -\omega^2 U_{ag} \]

\[U_{ag} = U_{ag0} e^{-\omega t} \]

\[U_{ag} = U_{ag0} \cos(\omega t) - U_{ag0}/\sin(\omega t) \]

\[U_{ag} = U_{ag0} + V_{ag0}i \]

A Naturally Oscillating System

Predator-Prey Model

- V = Vegetation
- H = Herbivores
- C = Carnivores

\[\frac{dH}{dt} = \alpha V - \alpha H - \alpha CH \]

\[\frac{dC}{dt} = \beta (\alpha CH) - \beta C \]

Boundary Layer Meteorology Example

Nocturnal Wind Cycles

- U = Ug + Uag

V = Vegetation
H = Herbivores
C = Carnivores

- Circle of Cartoon Violence (a stable cyclic system)
A Naturally Oscillating System

24 Jan 2007 ATM 515: Intro Env Modeling : Stella Orientation (Intro)

Chaotic Oscillations

\[\frac{dx}{dt} = p(y - x) \]
\[\frac{dy}{dt} = (r - z)x - y \]
\[\frac{dz}{dt} = xy - bz \]

24 Jan 2007 ATM 515: Intro Env Modeling : Stella Orientation (Intro)

And for the rest of the time...

Stella Play and the Leaky Bucket!
(And if you want, Earth’s energy budget)
Continues into Monday...

24 Jan 2007 ATM 515: Intro Env Modeling : Stella Orientation (Intro)