Oh Crap! An Exam!

- First Takehome Exam (this is the Feb + March Exams).
- Issued Monday
- Due “Next Wednesday” (after Spring Break, 14 MAR) NO LATE EXAMS!
- It Will involve Math.
- It Will involve Writing
- See and Live my guidelines to writing an essay exam answer.

Lecture 13: Endogenous and Exogenous Processes

“Bull’s Eye Diagrams”

Accounting for Knowns and Unknowns...
And what you want from the Data Shoppe

Agenda

- The Bull’s Eye Diagram
 - Endogenous vs Endogenous Inventories
- External Data
 - Data Assimilation
 - Data Forcing
- External Processes
 - "Parameterizations"

So far...

- Our models have been very simple in that we need only give them a small push and off they go.
- Initial Value Problems.
- Most science applications fall beyond this spectrum.

Example: Mono Lake

- Our simulation “assumed” that many variables that we know change from year to year change with time.
 - Potential Evaporation
 - Precipitation
 - Stream flow
 - Regional Water Demands...

Example: Mono Lake

- Physical Processes were also ignored
 - Basin Evaporation from Exposed Lakebed
 - Groundwater Fluxes
- At the time, these rug-sweepings were necessary to create a scenario.
- Similarly, other applications, other approximations will be needed
When I first got into this.

- Susquehanna River Basin Experiment.
 - Multiple Models
 - Different Problem Domains
 - Different Inputs
 - Different Outputs
 - Different Scales
 - And no common interface!

And how I came here...

- Numerical Weather Prediction Model
- Surface Hydrology Component
- LSM
- MODFLOW
- SWALLOW
- HOLE
- LOSS & SEEPAGE
- SPRING
- FLOW & SWALLOW HOLES
- GROUNDWATER RECHARGE
- CHANNEL FLOW
- INFILTRATION
- RESERVOIR
- WATER FLUXES
- HEAD DIFFERENCES

The “Bullseye Diagram”

- Meadows and Robinson (’85)
 - An inventory of processes explicitly calculated in a model, those provided externally and those totally outside of the model’s mission parameters.

- Do NOT confuse this with the term “Boundary Conditions”

The “Bullseye Diagram”

- The model (this data organizing model, that is) is divided into three categories:
 - Endogenous
 - Exogenous
 - Excluded
The “Bullseye Diagram”

- **Endogenous**
 - Model entities that are simulated completely within the simulation
 - Examples (From our previous adventures)
 - Transient Carbon Stocks
 - Bucket and Lake Volumes
 - Wabbits and Fudds (and sometimes carrots!)

- **Exogenous**
 - Model entities prescribed outside of the computational realm
 - “Forcings”
 - Examples
 - An imposed transition rate
 - Carbon Entry Rate (a boundary condition)
 - Incoming Energy Rate (solar radiation, and sometimes carrots!)
 - Precip and PE
 - [Initial Conditions of Endogenous values]

- **Excluded**
 - Entities that are not included in the model at all.
 - Examples
 - LA Lifestyle
 - Climate Variability
 - Wabbit vs Duck “issues”

The “Bullseye Diagram”

- **Endogenous vs Exogenous**
 - The “How” Test
 - How do we calculate net profits?
 - How do we calculate rabbit birth rates?
 - How do we represent interannual climate variability?
 - How do we determine predation rates?

- **Exogenous vs Exogenous**
 - Here, we are asking ourselves the manner in which a model entity is calculated.
 - Notice the alternatives we have before us:
Endogenous vs. Exogenous

- We can prescribe a value based on reasoned assumptions (Ex)
- We can calculate it on-the-fly from other variables (En)
- We can force it externally by either fixed data or data from a coupled model (Ex)

Exogenous vs. Excluded

- These are the questions of keeping a process in a model or ignoring it all together
- [These are also the questions you need to be ready to answer!]

Always remember that a model is an hobbled approximation to reality by necessity!
The degree of that hobbling is a different matter.

Notebook Assignment

- Do an inventory of your pet modeling problems
 - Exogenous
 - Why you need it on-the-fly?
 - Endogenous
 - Criteria for "stepping" it down when there is an option to do it explicitly?
 - Excluded
 - Ditto for the criteria: Why are you excluding/including it?
 - Be reasonable & honest here
 - Cover the obvious issues, not spurious road spikes.
 - Butterflies in Bali are not an item to include.

Onto "Forcing"

- What is External Forcing
 - Forcing is the injection of "foreign" data into your model environment.
 - Can be injected across the domain or at the "boundaries" (These are Boundary Conditions)
 - This is often restricted to Dynamic Information, not held constant at initialization but not always
 - Keep you eyes on the user’s context
Onto “Forcing”

- What is External Forcing
 - Forcing is the injection of “foreign” data into your model environment.
 - This is often restricted to Dynamic Information, not held constant at initialization but not always
 - Keep you eyes on the user’s context

Exogenous Model Forcing

- What is External Forcing
 - Forcings can be imported from a separate model (a coupled model system)
 - This can draw the line between exogenous and endogenous data.
 - How to draw the line?
 - Difficult Question
 - Difficult Example:

Coupled Hydrologic Modeling

Exogenous Model Forcing

- When is Exogenous Forcing from an “external” model an Endogenous Coupling?
 - Good Rule of Thumb for an Exogenous Forcing of an adjacent running model
 - Disparate Time Steps?
 - Is the subroutine in question called periodically? (debatable)
 - Disparate Spatial Scales?
 - Do you have to aggregate or disaggregate dataset?
 - Stop/Start Data Exchanges?
 - Does the execution of a model shell terminate and hold while a “coupled” component’s process is spawned and run? Can be automatic or user-interrupted
Exogenous Forcing?

Endogenous Coupling!

Does this matter?

Notebook Assignment II
Figure 1