Lecture 13
Validation and Verification
Making Sure that the Theory is Practical!
Agenda

- General Overview of Model Validation

- Some Comment and Thoughts on the Practical Use of Model Output (vis-à-vis, Validation and Applications)
Misquote of the Day

“A Modeler is someone who goes into the restaurant and eats the menu.”
Why Validate?

A Model that is not reviewed or tested against reality cannot be trusted to simulate it.
The Challenge of Validating a Model

☐ Any Model being used for decision support, pedagogical support needs to go through an evaluation phrase.

☐ We will call this Validation and Verification.

☐ These two V’s can be fightin’ words!
From the beginning...

- A model is an *idealized* representation of a system or entity that encapsulates *select* key attributes of that system.
- Not all elements are included, nor can, nor should be.
- Those elements that *are* included may not be represented explicitly or even in a manner that is physically correct!
Enter the Problem

☐ OK then...

- We have an approximation of a complex system in which we have, by necessity
 - Dropped certain physical components
 - Isolate Others
 - Discredited from a Continuous Framework
 - Truncated (in a fourier/wave sense)
 - Simplified
 - Scaled

- ...And otherwise removed it from a precise match of the real universe
So all we want to know is...

What bloody good is it, Then?
What we may want to know tomorrow?

Can I use it for something else?
So, how does one evaluate a model then?

- Given the broad spectrum of applications and needs, there is no universal procedure for model validation.

- There ARE, however, a set of confidence building tests that many users perform.
First, what is your model supposed to do?

- Capture general trends in behavior?
 - (e.g., a pedagogical example)
- Predict specific events within a real-time/real-world spatio-temporal threshold?
 - (e.g., operational models)
- Diagnose current events (no time dependence)
 - (e.g., diagnostic models)
The General Goal

- A model should “inspire” confidence *for its particular application* in its first-level users.

- You are the first-level users
 - The developers and primary executors of the models.
 - Those responsible for interpreting the direct model output into “products” and “decisions.”
Jargon Alert

Some of the terms you see here do not meet with the approval of all communities

- I don’t like all of the specific terms for the groups we’ll now discuss but I do like the groups themselves.
Excellent Example!

- Verify
- Validate
 - See the Konicko paper
Jargon Alert

Best advice:
Always define your assessment criteria
Always be willing to account for differences between cliques, communities and disciplines.
General Model Evaluations

- "Verification." (jargon alert)
 - External Benching
- "Face Validity." (jargon alert)
 - Proper Behavior/Structure
- "Historical Behavior."
 - Past Predictability
- "Extreme Behavior."
 - Robustness
- "Detailed Model Check."
 - Model "Intercomparisons"**
 - Car and Driver Road Tests
“Verification.”

- Independent Evaluation
 - External Review
 - Did the model behave as it should have?
 - Did it satisfy the requirements of independent reviewers
 - Cross Platform Compatibility?
 - Chip Portability?
 - Examples
 - Comparing our models to a bench
 - Comparing against a “Demo.”
“Verification.”

- Independent Evaluation
 - External Review
 - Did the model behave as it should have?
 - Did it satisfy the requirements of independent reviewers
 - Cross Platform Compatibility?
 - Chip Portability?
 - Examples
 - Comparing our models to a bench
 - Comparing against a “Demo.”
“Face Validity.”

- Does it look right?
 - Output: Does it go up when it’s supposed to go up?
 - Structure:
 - Are the model components physically reasonable?
 - Are the explicit processes accurately represented for that scale?
 - Are the implicit processes (parameterizations and kludges*) tolerably represented for that scale?
 - There are those who consider this to “invalidate” face validity!
“Verification” vs “Validation”

- Validation vs Verification... (We use a different context)
 - A model can “verify” but NOT match a physical situation
 - Beware that a model is right for the wrong reasons
 - Example: An empirical model vs a physically-based model.
Dueling Jargon

- Meteorology and Forecasting
 - “Verification” often refers to overall modeling and forecast performance

- Groundwater Modeling
 - Verification = Veritas = Truth
 - Validation = “it works enough for me.”

- (Your prof actually likes the later distinction but lives with the former)
The Money Papers!

- Verify: from Veritas (Truth)
 - Many consider “verification” to be a universal match of model output and structure with factual data.
“Historical Behavior.”

☐ How does the model match output from previous cases?

☐ Often can be said to apply to models that are constructed based on historical data*

☐ Important if you have a lot of endogenous values (because it’s often driven by then)

☐ Comparing a model using the same datasets that helped produce it’s working behavior? **AVOID!**
“Extreme Behavior”

- Robustness
 - Very important for models based on empirical foundations.
 - A model derived from a limited range of case data may be vulnerable to extremes
 - This can be expanded to other concepts
 - Can include numerical and physical issues
 - Extreme temperatures and climates
 - Courant/CFL conditions
“Detailed Model Check”

- Comparisons of Models against each Other
 - Example: Project for Intercomparision for Land-Surface Process Schemes (PILPS)
Need Metrics?

- Examples of Validation Metrics
 - BIAS: \((x_{\text{obs}} - x_m) \text{ let } = x'\)
 - RMSE: Root Mean Square Error

\[
RMSE(t) = \sqrt{\frac{N}{\sum_{i=1}^{N} [x_{1,i}(t) - x_{2,i}(t)]^2}}
\]
Need Metrics?

- Examples of Validation Metrics
 - \(J: \) Cost Function \(\rightarrow \ln[P(x)] \)

\[
J(\bar{x}) = \frac{1}{2} (\bar{x} - \bar{x}^b)^T \mathbf{B}^{-1} (\bar{x} - \bar{x}^b) + \frac{1}{2} (y - y^o)^T (\mathbf{O} + \mathbf{F})^{-1} (y - y^o)
\]
Where does this put you?

☐ How would you demonstrate the effectiveness of a model in your problem domain?