Problems cover, Thevenin and Norton equivalent circuits, superposition and maximum power transfer.

Problem 1

Given:
- \(R_1 = 2 \) \(\Omega \)
- \(R_2 = 5 \) \(\Omega \)
- \(R_3 = 10 \) \(\Omega \)
- \(R_L = 20 \) \(\Omega \)
- \(I_S = 2 \) A
- \(V_S = 20 \) V

Find: \(R_T, V_T, I_N \) Independently

Do Not Use \(V_T = R_T I_N \)

Problem 2

Given:
- \(R_1 = 5 \) \(\Omega \)
- \(R_2 = 4 \) \(\Omega \)
- \(R_3 = 9 \) \(\Omega \)
- \(I_S = 10 \) A
- \(R_3 \) is the load resistor

Find: \(R_T, V_T, I_N \) Independently

Do Not Use \(V_T = R_T I_N \)

Problem 3

Given:
- \(R_1 = 6 \) \(\Omega \)
- \(R_2 = 12 \) \(\Omega \)
- \(R_3 = 3 \) \(\Omega \)
- \(R_4 = 4 \) \(\Omega \)
- \(R_5 = 6 \) \(\Omega \)
- \(V_S = 72 \) V
- \(R_5 \) is the load resistor

Find: \(R_T, V_T, I_N \) Independently
Problem 4

Given:
- $R_1 = 3 \, \Omega$
- $R_2 = 2 \, \Omega$
- $R_3 = 5 \, \Omega$
- $I_s = 2 \, \text{A}$
- $V_s = 10 \, \text{V}$

Find: V_{R_2} via superposition

Problem 5

Given:
- Using the Thevenin equivalent circuit (voltage divider) and the values for V_T and R_T found in Problem 1.

Find:
- The equation for the power absorbed by the load in terms of V_T, R_T and R_L.
- Plot the power to the load for R_L – chose the range so it is reasonable and you see a maximum.
- What is the value of R_L for maximum power delivered to the load?