Lab Assistant / TA
Bryce TeBeest

Prerequisites: EE 220 completed with a grade of “C” or better and Math 321.

Catalog Description: This course is designed to provide the electrical engineering student with an understanding of the basic concepts of the profession. Topics covered include resistive circuits, transient circuits, and sinusoidal analysis. Students also investigate essential principles by conducting laboratory experiments related to the topics studied in the classroom. P-Spice is used to analyze electrical circuits using personal computers.

Additional Information: The student builds on the foundation established in EE 220. Topics include: AC power analysis (continued from EE220), three phase circuits, magnetically coupled circuits, frequency response, the Laplace transform, the Fourier series, Fourier transforms, and two-port networks.

Attendance: Required. Notify the instructor ahead of time (when possible) if you will be absent from class.

ADA Statement: Students with special needs or requiring special accommodations should contact the instructor (Scott Rausch at 394-1222 or Scott.Rausch@sdsmt.edu) and/or the campus ADA coordinator, Jolie McCoy, at 394-1924 at the earliest opportunity.

Freedom in Learning Statement: Students are responsible for learning the content of any course of study in which they are enrolled. Under Board of Regents and University policy, student academic performance shall be evaluated solely on an academic basis and students should be free to take reasoned exception to the data or views offered in any course of study. Students who believe that an academic evaluation is unrelated to academic standards but is related instead to judgment of their personal opinion or conduct should contact the dean of the college which offers the class to initiate a review of the evaluation.

Use of Electronic Devices in Class: Professionalism and courtesy is requested.

Grading (approx):
- 4 Hour Exams @ 100 points
- Quizzes
- Homework
- Laboratory (Log book, Reports and Final Project)
- Final Exam
- Total

<table>
<thead>
<tr>
<th></th>
<th>M001</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Scott Rausch</td>
<td>9:00 – 9:50a MWF</td>
<td>EP208</td>
</tr>
<tr>
<td>Lab Assistant</td>
<td>Bryce TeBeest</td>
<td>2:00 – 4:00p Th</td>
<td>EP336</td>
</tr>
</tbody>
</table>

Policies:
- Keep a problem notebook. Use engineering graph paper.
- Missed quizzes and missed exams will not be made up (exception: those missed for attending school-sponsored events or emergencies).
- Follow lab notebook and report guidelines per “Memorandum Reports for EE/CENG Projects”.
- Each laboratory project must be completed to successfully complete the course.

Exam Schedule: 2 February, 28 February, 30 March, 23 April

Final Exam: TBD
Office Hours: Posted
E-mail: Scott.Rausch@sdsmt.edu

Homework:
- Students are encouraged to discuss homework problems with classmates. However, blatant copying, and plagiarism is not allowed.

- To facilitate grading, homework shall meet the following specifications:
 (a) Use the front side (i.e., single-sided) of 8.5” × 11” engineering graph paper.
 (b) All pages should be in order and numbered (i/j format) in top right hand corner, with the course number, problem number(s), and your name appearing at the top of each page.
 (c) Paraphrase the problem description so that another person can follow the problem without referencing the text.
 (d) Writing / figures / graphs must be legible.
 (e) All work must be shown for full credit - be as thorough as possible.
 (f) Answers should be boxed or double underlined, with the variable names, values and units included.
 (g) Diagrams / figures / plots / graphs / tables should be a readable size. They should be titled, labeled, scaled, and clearly drawn.
 (h) Use conventional engineering units such as microfarads, millivolts, picoseconds, gigahertz, etc.