Problem 1

This problem will walk you through the derivation for the voltage divider/series circuit.

1. Convince yourself that the current is constant through each element by writing KCL equations for nodes A, B and C.
2. Replace all the currents with the variable, i.
3. Write the KVL equation for the circuit.
4. Use Ohm’s Law to express V_{R1} and V_{R2} in terms of the current and resistances.
5. Algebraically solve for the current, i.
6. Solve for the voltage drop across each resistor in terms of the voltage source, V_S and the resistances by substituting, the current found in part five back into Ohm’s Law.
7. What is the equivalent resistance? Or, what one resistor could you use to replace R_1 and R_2 that would result in the same current?

Problem 2

This problem will walk you through the derivation for the current divider/parallel circuit.

1. Convince yourself that the same across each element i by writing KVL equations for all three loops.
2. Replace all the voltages with the variable, V.
3. Write the KCL equation for the circuit.
4. Use Ohm’s Law to express i_1 and i_2 in terms of the voltage and resistances.
5. Algebraically solve for the voltage, V.
6. Solve for the current through each resistor in terms of the current source, I_S and the resistances by substituting the voltage found in part five back into Ohm’s Law.
7. What is the equivalent resistance? Or, what one resistor could you use to replace R_1 and R_2 that would result in the same current?
Problem 3

Given:
- $R_1 = 10 \, \Omega$
- $R_2 = 40 \, \Omega$
- $R_3 = 20 \, \Omega$
- $R_4 = 30 \, \Omega$
- $I_S = 20 \, A$

Find:
- The equivalent resistance as seen by the source.
- The current through each resistor.
- The voltage across each resistor.
- Voltage across the source.

Problem 4

Given:
- The circuit diagrams

Find:
- The current through each element as a function of R, α and V_S
- V_o as a function of α and V_S
- Plot V_o as a function of α as α varies from 0 to 1.

Problem 5

Given:
- $R_1 = 10 \, \Omega$, $R_2 = 25 \, \Omega$
- $R_3 = 60 \, \Omega$, $R_4 = 20 \, \Omega$
- $R_5 = 24 \, \Omega$, $R_6 = 20 \, \Omega$
- $R_7 = 50 \, \Omega$, $R_8 = 30 \, \Omega$
- $V_S = 15 \, V$

Find: i, v

Problem 6

Given:
- $R_1 = 14 \, \Omega$, $R_2 = 15 \, \Omega$
- $R_3 = 10 \, \Omega$, $V_S = 40 \, V$

Find:
- Voltage across all the resistors
- Current through each element.
Problem 7

Find the current, i, the current through the source, and V_{R4}

Given:

$R_1 = 70 \, \Omega$
$R_2 = 30 \, \Omega$
$R_3 = 20 \, \Omega$
$R_4 = 5 \, \Omega$