Do Laboratories individually. If you have a trainer board, it would be helpful to bring it.

Preliminary –
- You will be using the LF 351 Op-amp IC. It would be good to print out of the datasheet.

Operational Amplifier

![Op Amp Schematic](image1)

![Op Amp IC Schematic](image2)

Preliminary
- What would you expect the output voltage to be relative to the input voltage?

Experimental
- Wire the operational amplifier with $R_F = 30\,\text{K}\Omega$ and $R_1=10\,\text{K}\Omega$. The input voltage source can be a 1000 Hertz sinusoidal waveform with amplitudes that will be varied.
- Wire $V_{EE} = -15\,\text{Volts}$ and $V_{CC} = +15\,\text{Volts}$. Pin 3, the positive input will be wired to ground which MUST be a common ground with the source. The input is wired to pin 2 and the output taken from pin 6.
- What is the maximum output voltage you would expect to see based on the power source?
- Set the signal generator at several voltages below this and verify that the amplifier is processing the signal with the amplification expected. Sketch or print the waveform.
- Increase the voltage to see the “clipping” effect. Sketch or print the waveform.
- Change the circuit to attenuate the input signal by a factor of $\frac{1}{2}$ instead of amplifying it. Be careful to chose the resistors in the correct range – too low = high current = magic smoke being let out of the IC, too large and the current into the amp may not equal zero. Sketch or print the waveform.
Summing Amplifier (time permitting, extra credit)

![Summing Amplifier Diagram]

Figure 3: Summing Amplifier

In this summing amplifier circuit, R_1 and R_2 are 1 kΩ resistors, R_F is a 2.4 kΩ resistor and $R_{1\text{pot}}$ and $R_{2\text{pot}}$ are potentiometers wired to vary between 0 and 5 kΩ. If you are using a trainer board, you can use the 1 kΩ pot instead of one of the 5 kΩ pots. The output will be on channel 2 of the oscilloscope. Channel 1 can be used to see the input signals if desired. Be aware that you may have to change the trigger channel on the oscilloscope.

Prelab
- Write the equation relating V_O to V_1 and V_2.
- What is the range of amplifications/attenuations for V_1 and V_2.

Lab
- Construct the summing circuit.
- Set V_1 to a sine waveform of approximately 200 kHz and 1 Vpp and set V_2 to a sine waveform of approximately 100 Hz and 10 Vpp.
 - Vary the potentiometers (especially $R_{1\text{pot}}$) to see the affect on the output signal of attenuating or amplifying noise (the high frequency signal). Think about which signal you would prefer.
 - Sketch or print a waveform with and without a lot of noise.