Consider the unit step response of a unity feedback control system whose open loop transfer function is \(G(s) = \frac{G}{s(s+1)} \)

\[T(s) = \frac{G}{1+GH}; \quad H(s) = 1 \]

\[T(s) = \frac{s(s+1)}{s(s+1)} \]

Find: \(T_r, T_p, T_\infty, T_s \)

General 2nd Order TF: \(\frac{w_n^2}{s^2 + 2Sw_n + w_n^2} \)

\(w_n^2 = 1 \Rightarrow w_n = 1 \leq \)

\(\frac{1}{2Sw_n^2} = 1 \)

\(S = \frac{1}{2w_n^2} = \frac{1}{2(1)} \)

\(S = 0.5 \leq \)

\(\frac{1}{S^2 + 0.5} \)

\[T_p = \frac{\pi}{\sqrt{1 - 0.5^2}} \]

\[T_p = \frac{\pi}{\sqrt{1 - 0.5^2}} \]

\[T_p = 3.63 \text{ sec} \]

\(\%\text{O.S.} = e^{-\frac{\pi T}{\sqrt{1 - 0.5^2}}} \times 100 \)

\(\%\text{O.S.} = 16.37 \% \)

\[T_s = \frac{4}{5w_n} = \frac{4}{0.5} \]

\[T_s = 8 \text{ sec} \]

\[T_r = \frac{\pi - \beta}{\omega_n} \]

\(\beta = \tan^{-1}\left(\frac{\omega_n}{\beta}\right) \)

\(\beta = \tan^{-1}\left(\frac{\omega_n}{\frac{\omega_n}{0.5}}\right) = \tan^{-1}\left(\frac{\frac{S^2}{\omega_n}}{0.5}\right) = 1.047 \)

\[T_r = \frac{\pi - 1.047}{(0.5)\sqrt{0.5}} = 2.418 \text{ sec} \]

\[T_s = 2.418 \text{ sec} \]
Problem B-5-3

Consider the closed-loop system given by

\[C(s) = \frac{\omega_n^2}{\frac{1}{100}} = \frac{\omega_n^2}{s^2 + 25\omega_n s + \omega_n^2} \]

Determine values of \(S \) and \(\omega_n \) so that the system responds to a step input with approximately 5% overshoot and with a settling time of 2 sec (27s).

\[S = \frac{-\ln \left(\frac{7005}{100} \right)}{\sqrt{\pi^2 + \ln^2 \left(\frac{7005}{100} \right)}} \]

\[S = \frac{-\ln \left(\frac{5}{100} \right)}{\sqrt{\pi^2 + \ln^2 \left(\frac{5}{100} \right)}} = \]

\[S = 0.69 \leq \]

\[T_s = \frac{4}{5\omega_n} \]

\[\omega_n = \frac{4}{T_s} = \frac{4}{0.69} \]

\[\omega_n = 2.898 \text{ rad/sec} \]
Problem 8-5-4

The figure is a block diagram of a space-vehicle attitude-control system. Assuming the time constant T of the controller to be 3 sec, and the ratio $\frac{K}{s}$ to be $\frac{3}{4}$ rad/sec2.

Find the damping ratio of the system.

\[T(s) = \frac{K(Ts+1)}{Js^2} = \frac{K(Ts+1)}{s^2 + KTs + K} \]

\[= \frac{\frac{K}{s}(Ts+1)}{s^2 + [\frac{K}{2}]s + \frac{K}{4}} = \frac{\frac{K}{s} T(s + \frac{1}{T})}{s^2 + \frac{K}{2}s + \frac{K}{4}} \]

\[\omega_n^2 = \frac{K}{2} = \frac{3}{4} \]

\[\omega_n = \frac{\sqrt{3}}{2} \]

\[\omega_h = 0.4714 \text{ rad/sec} \]

\[2\omega_h = \frac{\omega_n}{2} = \frac{\sqrt{3}}{4} \]

\[2\omega_h = \frac{\omega_n}{2} = \frac{\sqrt{3}}{4} \]

\[S = \frac{2\omega_h}{2\omega_h} = \frac{2}{2\sqrt{3}} = \frac{2}{2\sqrt{3}} \]

\[S = \frac{2}{2\sqrt{3}} \]

\[S = 0.707 \]