Problem 1
For the circuit below find the following using voltage and current division (not node or mesh analysis) for

1. \(v_s(t) = 10 \sin(t) \)
2. \(v_s(t) = 10 \cos(1000t) \)
 a) What is the current through the source?
 b) What is the current, \(i \)?
 c) What is the voltage drop, \(V_o \)?

Notice which frequencies cause \(Z_L \) and \(Z_C \) to be large.

Problem 2
Given:
\(R_1 = 20 \ \Omega \)
\(R_2 = 25 \ \Omega \)
\(L = 5 \ \text{H} \)
\(C = 0.2 \ \text{F} \)
\(v_s = 5\cos(2\pi t) \ \text{V} \)
Find: The two node voltages (neither is known)
 The three mesh currents
 The voltage across \(C \)
 The current through \(V_S \)

Problem 3
Given:
\(R_1 = 10 \ \Omega \)
\(L = 15 \ \text{mH} \)
\(C = 100 \ \mu\text{F} \)
\(v_{s1} = 20\cos(1000t) \ \text{V} \)
\(v_{s2} = 10\sin(500t - \frac{\pi}{2}) \ \text{V} \)
Notice the frequencies
Find: The unk. node voltage
 The two mesh currents
 The voltage across \(C \)
 The current through \(L \)