Problem 2: Using the circuit in Figure 1,
- Calculate the equivalent resistance, R_{eq}
- Calculate the current i and show its direction of flow on the figure.
- Calculate the voltage drop, v_1 and v_2 across each resistor.

Figure 1: Circuit for Problem 1

\[V_1 = \frac{1}{1 + \frac{3}{1}} \cdot 4 = 1V = v_1 \]

\[V_2 = \frac{3}{1 + \frac{3}{1}} \cdot 3 = 3V = v_2 \]

Problem 3: Using the circuit in Figure 2,
- Calculate the equivalent resistance, R_{eq}
- Calculate the currents i_1, i_2, i_3, and i_4

Figure 2: Circuit for Problem 2

Also: $i_3 = i_4$ and $i_2 = 2i_4$

So, Possible by Reasoning

\[i_2 = \frac{1}{2} \cdot 4A = \frac{1}{2} \cdot 4 = 2A = i_4 \]

\[i_3 = \frac{1}{2} \cdot 4A = \frac{1}{2} \cdot 4 = 2A = i_2 \]

\[i_4 = \frac{1}{2} \cdot 4A = \frac{1}{2} \cdot 4 = 2A = i_3 \]