Problem 1.7.7 Solution

Let $T = \{ x \mid -x \in S \}$. S is nonempty, so T is nonempty. By hypothesis S has a lower bound L_0, so $L_0 \leq x$ for all $x \in S$. But then for all $t \in T$, we know that $-t \in S$, therefore $L_0 \leq -t$ and so $-L_0 \geq t$. This makes $-L_0$ an upper bound of T, so the Completeness Axiom guarantees the existence of T_0, the least upper bound of T.

Claim: $-T_0$ is the greatest lower bound of S. We must show (1) that $-T_0$ is a lower bound of S and (2) that of all lower bounds of S, $-T_0$ is greatest.

Let x be any element of S. Then $-x \in T$, so $-x \leq T_0$ and $x \geq -T_0$. Therefore $-T_0$ is a lower bound for S.

Next, choose any lower bound L of S. For any $t \in T$, we have $-t \in S$, so $L \leq -t$, which means $-L \geq t$. This makes $-L$ an upper bound of T, so $T_0 \leq -L$ (the least upper bound is smaller than any other upper bound). But then $-T_0 \geq L$. Since $-T_0$ is a lower bound for S and is greater than or equal to any other lower bound for S, it follows that $-T_0$ is the greatest lower bound for S.