The In-Situ State: The Elusive Ingredient in Lunar Simulant

Ernest S. Berney IV
John F. Peters
Research Civil Engineers
NASA Involvement

• Modular Regolith Characterization Instrument Suite for Construction and In Situ Resource Utilization Surveys
 – Project Lead:
 • Dr. Jerome Johnson – CRREL
 – Mechanical Property Probe Lead
 • Dr. David Cole – CRREL
 – Geotechnical Property Lead
 • Dr. Ernest Berney – GSL

• In-Situ Investigation of Lunar Surface and Subsurface Material Properties
Key Issues

• Past Lunar Mission Exploration
 – Primarily shallow depths (< 0.5 m)
 • Shallow excavation (scoops)
 • Few deep probes
• New Lunar Missions
 – Primarily deep depths (2 m)
 • Deep probes – Coring
 • Excavation – Mining

WHAT’S BELOW THE SURFACE?
Regolith Deposition

- **Comminution (Meteor Impact)**
 - Impact fragmentation
 - Mineral melting (Breccias)
 - Consolidation

- **Agglutination**
 - Melting
 - 30-50% of regolith

- **Mixing**
 - Interlocking of fragments, breccia and agglutinates
Structure

• Common in Terrestrial Soils
 – Loess
 – Glacial Till
 – Quickclays

• Present in lunar soils
 – Partial regolith induration \Rightarrow Quickclay
 – Regolith breccia \Rightarrow Glacial Till
 – Agglutinates \Rightarrow Loess
Typical Lunar Structure

Intermediate layer, 2, represents complex response due to influence of structure on strength, compressibility and removal

Depositional Colluvium

Comminuted Regolith

Megaregolith

Intact Bedrock

- Very loose material
- Considerable structure and stability
- Very hard material at depth
- Beyond range of interest
What do we measure?

- **Strength**
 - Friction angle
 - Cohesion
 - Angle of Repose

- **Compressibility**
 - Indices
 - Modulus

- **Rippability**
 - Energy

All these properties have been measured from past missions on reconstituted material.

WHAT’S MISSING?
Influence of Structure

- **Strength increases**
 - Maturity
 - overconsolidation,
 - induration
 - Aggregate interlock
- **Compressibility varies**
 - Stiff initial response
 - Collapse potential
 - void ratios higher than simulant
 - natural formation prevents achievement of most stable configuration
What does this mean to ISRU

- Higher energy requirements
 - Probe insertion
 - Rippability/Excavation
 - In-situ strength
- Durability
 - Abrasion
- Drillability
 - What tools work best on the moon
 - What materials should the tools consist of
Current Lab Formation

- Not represented by simulant compaction
 - Lacks natural interlock
 - Lacks induration of mature regolith
- Oxidation of terrestrial basalt simulant alters surface texture from lunar basalts
- Need to create structure with in-situ material!
Creating Structure

• Crushing of larger aggregate in-situ
 – Can create impact framentation
 – Fill gaps with compacted regolith
 – Allows for larger void structure
Creating Structure

- **Cementation agents**
 - Creates bonding within compacted aggregate
 - Simulates induration or melting
 - Allows for increased resistance to excavation

- **Heating**
 - Temperature indurate simulant
 - Heat activated epoxy resin coatings

![Diagram of contact melting]
Why should we care?

- **Energy** is the #1 Issue
 - Conservation is critical to mission success
- We do not want to underestimate
 - Limits the potential of extra-terrestrial instruments
 - Can cause premature failure
- Cost $$ if we are wrong
What to do?

- Literature can tell us ranges of influence between in-situ and reconstituted terrestrial material
 - Provides factor of safety in instrument design for added resistance
- Attempt to simulate structure in laboratory environment
- Use of DEM to predict behavior of soil structure
Conclusions

• New lunar missions seek to explore deeper into the subsurface
• Structure of in-situ regolith will play a role in affecting exploration
• There is a need to account for structure in development of simulant/additives
Questions?