Agenda

Web Resources

Schedule

Factory Physics

(New Assignment

Chapter 13: Problem 1

Chapter 14: Problems 1, 2)

Web Resources

http://sdmines.sdsmt.edu/sdsmt/directory/courses/2009fa/tm663M021-099

I have your exams graded.

Have entered results in D2L.
A Pull Planning Framework

We think in generalities, we live in detail.

—Alfred North Whitehead

Purpose of Production Control

Objective: Meet customer expectations with on-time delivery of correct quantities of desired specification without excessive lead times or large inventory levels.

Two Basic Approaches:

Push Systems: Material Requirements Planning
- General.
- Provides a planning hierarchy.
- Underlying model often inappropriate.

Pull Systems: Kanban, CONWIP
- Reduces congestion.
- Improves production environment.
- Suitable only for repetitive manufacturing.
Advantages of Pull

Advantages:

- **Observability**: We can see WIP but not capacity.
- **Efficiency**: Pull systems require less average WIP to attain same throughput as equivalent push system.
- **Robustness**: Pull systems are less sensitive to errors in WIP level than push systems are to errors in release rate.
- **Quality**: Pull systems require and promote improved quality.

Magic of Pull: WIP Cap

A Dilemma

Question: If pull is so great, why do people still buy ERP systems?

Answer: Manufacturing involves planning as well as execution.

<table>
<thead>
<tr>
<th></th>
<th>Planning</th>
<th>Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push</td>
<td>good</td>
<td>bad</td>
</tr>
<tr>
<td>Pull</td>
<td>bad</td>
<td>good</td>
</tr>
</tbody>
</table>

MRP II Planning Hierarchy
Hierarchical Pull Planning Framework

Goals:
- To attain the benefits of a pull environment.
- To gain the generality of hierarchical production planning systems.

The Environment:
- CONWIP production lines.
- Daily/Weekly production quota.

The Hierarchy:
- Based on CONWIP for predictability and generality.
- Consistency between levels.
- Accommodate different implementations of modules for different environments.
- Use feedback.

Hierarchical Planning in a Pull System

CONWIP as the Foundation

Pull:
- jobs into the line whenever parts are used.
- jobs with the same routing.
- jobs for different part numbers.

Push:
- jobs between stations on line.
- jobs into buffer storage between lines.

A CONWIP Line:
- represents a level in a bill of material.
- is between stock points.
- maintains a constant amount of work in process.
Benefits of CONWIP

CONWIP vs. Push:
- Easier and more robust control.
- Less congestion.
- Greater predictability.

CONWIP vs. Kanban:
- Can accommodate a changing product mix.
- Can be used with setups.
- Suitable for short runs of small lots.
- More predictable.

Conveyor Model of CONWIP

Predicting Completion Times:
- Practical production rate: r_f parts per hour
- Minimum practical lead time: T_P hours
- X_i is number of parts in job i on the backlog.
- Then the expected completion time of the n^{th} job, c_n, will be:

$$c_n = \sum_{i=1}^{n} X_i T_P + \frac{T_P}{r_f}$$

Quoting Due Dates: need to add a “fudge factor” (which should consider cycle time variability) to ensure a reasonable service level.

Aggregating Planning by Time Horizon

<table>
<thead>
<tr>
<th>Time Horizon</th>
<th>Length</th>
<th>Representative Decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate-Term</td>
<td>week – year</td>
<td>Work Scheduling, Scheduling Assignments, Marketing Scheduling, Sales Promotion, Purchasing Decisions</td>
</tr>
<tr>
<td>Short-Term (Operational)</td>
<td>hour – week</td>
<td>Material Flow Control, Worker Assignments, Machine Setup Decisions, Process Control, Quality Compliance Decisions, Inventory Management, Reports</td>
</tr>
</tbody>
</table>
Other Levels of Aggregation

Processes: Treat several workstations as one. Leave out unimportant (never bottleneck) workstations.

Products: Group different part numbers into product families, which have
- have roughly the same routing
- have roughly the same price
- share setups

Personnel: Categorize people according to
- management vs. labor
- shift
- workstation
- craft
- permanent vs. temporary

Forecasting

Basic Problem: predict demand for planning purposes.

Laws of Forecasting:
1. Forecasts are always wrong!
2. Forecasts always change!
3. The further into the future, the less reliable the forecast will be!

Forecasting Tools:
- Qualitative:
 - Delphi
 - Analogies
 - Many others
- Quantitative:
 - Causal models (e.g., regression models)
 - Time series models

Capacity/Facility Planning

Basic Problem: how much and what kind of physical equipment is needed to support production goals?

Issues:
- Basic Capacity Calculations: stand-alone capacities and congestion effects (e.g., blocking)
- Capacity Strategy: lead or follow demand
- Make-or-Buy: vending, long-term identity
- Flexibility: with regard to product, volume, mix
- Speed: scalability, learning curves
Workforce Planning

Basic Problem: how much and what kind of labor is needed to support production goals?

Issues:
- **Basic Staffing Calculations:** standard labor hours adjusted for worker availability.
- **Working Environment:** stability, morale, learning.
- **Flexibility/Agility:** ability of workforce to support plant’s ability to respond to short and long term shifts.
- **Quality:** procedures are only as good as the people who carry them out.

Aggregate Planning

Basic Problem: generate a long-term production plan that establishes a rough product mix, anticipates bottlenecks, and is consistent with capacity and workforce plans.

Issues:
- **Aggregation:** product families and time periods must be set appropriately for the environment.
- **Coordination:** AP is the link between the high level functions of forecasting/capacity planning and intermediate level functions of quota setting and scheduling.
- **Anticipating Execution:** AP is virtually always done deterministically, while production is carried out in a stochastic environment.
- **Linear Programming:** is a powerful tool well-suited to AP and other optimization problems.

Quota Setting

Basic Problem: set target production quota for pull system

Issues: Larger quotas yield

Benefits:
- Increased throughput.
- Increased utilization.
- Lower unit labor hour.
- Lower allocation of overhead.

Costs:
- More overtime.
- Higher WIP levels.
- More expediting.
- Increased difficulties in quality control.
Planned Catch-Up Times

<table>
<thead>
<tr>
<th>Regular Time</th>
<th>Catch-Up Time</th>
<th>Regular Time</th>
<th>Catch-Up Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>R</td>
<td>T</td>
<td>T + R</td>
</tr>
</tbody>
</table>

Economic Production Quota Notation

\[p = \text{unit profit} \]
\[C_{ot} = \text{fixed overtime cost} \]
\[T = \text{regular time production (random variable)} \]
\[\mu = \text{mean regular time production (mean (T))} \]
\[\sigma = \text{std dev of regular time production (std (T))} \]
\[M = \text{maximum overtime production} \]
\[Q = \text{regular time production quota (decision variable)} \]

Simple “Sell-All-You-Can-Make” Model

Objective Function: Average weekly profit

\[\max_0 Z = pQ - C_{ot} \Pr[Y \leq Q] \]

Reasonability Test: We want the probability of not being able to catch up on overtime to be small (i.e., \(\alpha \)):

\[\Pr(Q^* - Y > M) \leq \alpha \]

If this is not true, another (lost sales) model should be used.
Simple “Sell-All-You-Can-Make” Model (cont.)

Normal Approximation: Express $Q = \mu - k\sigma$, so the objective and reasonability test can be written:

$$\max Z = \rho(\mu - k\sigma) - C_{in}(1 - \Phi(k))$$
$$\Phi(k + M/\sigma) < 1 - \alpha$$

Solution: The objective function is maximized by:

$$k^* = \left[\frac{2\ln \left(\frac{C_{in}}{\rho}\right)}{\sigma^2}\right]^{1/2}$$

$$Q^* = \mu + k^*$$

Intuition from Model

- Optimal production quota depends on both mean and variance of regular time production ($Q^*\) increases with μ and decreases with σ).
- Increasing capacity increases profit, since
 $$\frac{\partial Q^*}{\partial p} > 0$$
- Decreasing variance increases profit, since
 $$\frac{\partial Q^*}{\partial \sigma} < 0$$
- Model is valid (i.e., has a solution $0 < k^* < \infty$) only if
 $$p \leq \frac{C_{in}}{\sqrt{2\pi}\sigma}$$

since otherwise the term in the $\sqrt{}$ becomes negative. If this occurs, then OT cost does not exceed revenue lost to make-up period and a different model is required.

Other Quota Setting Models

Model 2: Lost Sales
- Run continuously
- Choose periodic production quota Q
- Demand above Q is lost (or vendored) at a cost.
- Solution looks like that to the Newsboy problem

Model 3: Fixed plus Variable Cost of Overtime
- Same as Model 1, except that cost of overtime has a fixed component, C_{ot}, and a component proportional to the amount of the shortage
- Solution looks like that to Model 1 except term under $\sqrt{}$ is more complex
Other Quota Setting Models (cont.)

Model 4: Backlogging
- Fixed plus variable cost of overtime.
- Decision maker can choose to carry shortage to next period at a cost.
- Dependence between periods requires more sophisticated solution techniques (e.g., dynamic programming).
- Solution consists of Q^*, optimal quota, plus S^*, an "overtime trigger" such that we use overtime only if the shortage is at least S^*.

Quota Setting Implementation

- Iteration between quota setting and aggregate planning may be necessary for consistency.
- Motivation (setting the "bar") vs. Prediction (quoting due dates).
- MPS smoothing - necessary to keep steady quota.
- Gross capacity control through shift addition/deletion, rather than production slow-down.

Setting WIP Levels

Basic Problem: establish WIP levels (card counts) in pull system.

Issues:
- Mean regular time production increases with WIP level.
- Variance of regular time production also affected by WIP level.
- WIP levels should be set to facilitate desired throughput.
- Adjustment may be necessary as system evolves (feedback).
- Easy method:
 1. Specify feasible cycle time, CT, and identify practical production rate, r_p.
 2. Set WIP from $WIP = r_p \times CT$.
Demand Management

Basic Problem: establish an interface between the customer and the plant floor, that supports both competitive customer service and workable production schedules.

Issues:
- **Customer Lead Times:** shorter is more competitive.
- **Customer Service:** on-time delivery.
- **Batching:** grouping like product families can reduce lost capacity due to setups.
- **Interface with Scheduling:** customer due dates are an enormously important control in the overall scheduling process.

Sequencing and Scheduling

Basic Problem: develop a plan to guide the release of work into the system and coordination with needed resources (e.g., machines, staffing, materials).

Methods:
- **Sequencing:**
 - Gives order of releases but not times.
 - Adequate for simple CONWIP lines where FISFO is maintained.
 - The "CONWIP backlog."
- **Scheduling:**
 - Gives detailed release times.
 - Attractive where complex routings make simple sequence impractical.
 - MRP-C.

Sequencing CONWIP Lines

Objectives:
- Maximize profit.
- No late jobs.
- All firm jobs selected.

Job Sequencing System:
- Sequences bottleneck line.
- Uses Quota to explicitly consider capacity.
- Tries to group like families of jobs to reduce setups.
- Identifies the "offensive" jobs in an infeasible schedule.
- Suggests where more work could start in a lightly loaded schedule.
- Provides sequence for other lines.
Real-Time Simulation

Basic Problem: anticipate problems in schedule execution and provide vehicle for exploring solutions.

Approaches:
- **Deterministic Simulation:**
 - Given release schedule and dispatching rules, predict output times.
 - Commercial packages (e.g., FACTOR).
- **Conveyor Model:**
 - Allow hot jobs to pass in buffers, not in the lines.
 - Use simplified simulation based on conveyor model to predict output times.

Shop Floor Control

Basic Problem: control flow of work through plant and coordinate with other activities (e.g., quality control, preventive maintenance, etc.)

Issues:
- **Customization:** SFC is often the most highly customized activity in a plant.
- **Information Collection:** SFC represents the interface with the actual production processes and is therefore a good place to collect data.
- **Simplicity:** departures from simple mechanisms must be carefully justified.

Tracking and Feedback

Basic Problems:
- Signal quota shortfall.
- Update capacity data.
- Quote delivery dates.

Functions:

Statistical Throughput Control:
- Monitored at critical tools.
- Like SPC, only measuring throughput.
- Problems are apparent with time to act.
- Workers aware of situation.

Feedback:
- Collect capacity data.
- Measure continual improvement.
Conclusions

Pull Environment Provides:
• Less WIP and thereby earlier detection of quality problems.
• Shorter lead times allowing increased customer response and less reliance on forecasts.
• Less buffer stock and therefore less exposure to schedule and engineering changes.

CONWIP Provides: a pull environment that
• Has greater throughput for equivalent WIP than kanban.
• Can accommodate a changing product mix.
• Can be used with setups.
• Is suitable for short runs of small lots.
• Is predictable.

Conclusions (cont.)

Planning Hierarchy Provides:
• Consistent framework for planning.
• Links between levels.
• Feedback.

Forecasting

The future is made of the same stuff as the present.

– Simone Weil
Forecasting “Laws”
1) Forecasts are always wrong!
2) Forecasts always change!
3) The further into the future, the less reliable the forecast!

Quantitative Forecasting

Goals:
• Predict future from past
• Smooth out “noise”
• Standardize forecasting procedure

Methodologies:
• Causal Forecasting:
 – regression analysis
 – other approaches
• Time Series Forecasting:
 – moving average
 – exponential smoothing
 – regression analysis
 – seasonal models
 – many others

Time Series Forecasting

\[A(i), i = 1, \ldots, T \] \rightarrow \text{Time series model} \rightarrow \text{Forecast} \]

\[f(t+1), i = 1, 2, \ldots \]
Time Series Approach

Notation:

\[A(t) = \text{observation in period } t, \quad t = 1, \ldots, T \]
\[F(t) = \text{forecast for period } t + \tau \]
\[F(t) = \text{smoothed estimate as of period } t \]
\[T(t) = \text{smoothed trend as of period } t \]

Time Series Approach (cont.)

Procedure:
1. Select model that computes \(f(t+\tau) \) from \(A(i), i = 1, \ldots, T \)
2. Forecast existing data and evaluate quality of fit by using:
 * MAD = \(\frac{1}{n} \sum_{t=1}^{n} |f(t) - A(t)| \)
 * MSD = \(\frac{1}{n} \sum_{t=1}^{n} (f(t) - A(t))^2 \)
 * BIAS = \(\frac{1}{n} \sum_{t=1}^{n} \frac{(f(t) - A(t))}{n} \)
3. Stop if fit is acceptable. Otherwise, adjust model constants and go to (2) or reject model and go to (1).

Moving Average

Assumptions:
* No trend
* Equal weight to last \(m \) observations

Model:

\[F(t) = \frac{1}{m} \sum_{i=1}^{m} A(t) \]
\[f(t+\tau) = F(t), \quad \tau = 1, 2, \ldots \]
Moving Average (cont.)

Example: Moving Average with \(m = 3 \) and \(m = 5 \).

<table>
<thead>
<tr>
<th>Month</th>
<th>Demand</th>
<th>Forecast ((m = 3))</th>
<th>Forecast ((m = 5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>11.67</td>
<td>12.00</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>12.00</td>
<td>12.33</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>12.33</td>
<td>12.67</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>12.67</td>
<td>13.00</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>13.00</td>
<td>13.33</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
<td>13.33</td>
<td>13.67</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>13.67</td>
<td>14.00</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>14.00</td>
<td>14.33</td>
</tr>
<tr>
<td>11</td>
<td>33</td>
<td>14.33</td>
<td>14.67</td>
</tr>
<tr>
<td>12</td>
<td>33</td>
<td>14.67</td>
<td>15.00</td>
</tr>
<tr>
<td>13</td>
<td>31</td>
<td>15.00</td>
<td>15.33</td>
</tr>
<tr>
<td>14</td>
<td>31</td>
<td>15.33</td>
<td>15.67</td>
</tr>
<tr>
<td>15</td>
<td>31</td>
<td>15.67</td>
<td>16.00</td>
</tr>
<tr>
<td>16</td>
<td>37</td>
<td>16.00</td>
<td>16.33</td>
</tr>
<tr>
<td>17</td>
<td>37</td>
<td>16.33</td>
<td>16.67</td>
</tr>
<tr>
<td>18</td>
<td>40</td>
<td>16.67</td>
<td>17.00</td>
</tr>
<tr>
<td>19</td>
<td>40</td>
<td>17.00</td>
<td>17.33</td>
</tr>
<tr>
<td>20</td>
<td>45</td>
<td>17.33</td>
<td>17.67</td>
</tr>
<tr>
<td>21</td>
<td>45</td>
<td>17.67</td>
<td>18.00</td>
</tr>
</tbody>
</table>

Note: bigger \(m \) makes forecast more stable, but less responsive.

Moving Average: \(m = 3, 5 \)

![Graph showing moving average with \(m = 3, 5 \)]

Exponential Smoothing

Assumptions:
- No trend
- Exponentially declining weight given to past observations

Model:

\[
\begin{align*}
F(t) &= \alpha A(t) + (1-\alpha) F(t-1) \\
f(t + \tau) &= F(t), \quad \tau = 1, 2, \ldots
\end{align*}
\]
Exponential Smoothing, $\alpha=0.2$

![Exponential Smoothing Graph](Image)

Frank Matejcik SD School of Mines & Technology

Exponential Smoothing with a Trend

Assumptions:
- Linear trend
- Exponentially declining weights to past observations/trends

Model:

\[F(t) = \alpha A(t) + (1-\alpha)(F(t-1) + T(t-1)) \]
\[T(t) = \beta[F(t) - F(t-1)] + (1-\beta)T(t-1) \]
\[f(t+\tau) = F(t) + \tau T(t) \]

Note: these calculations are easy, but there is some "art" in choosing $F(0)$ and $T(0)$ to start the time series.

Exponential Smoothing with a Trend (cont.)

Example: Exponential Smoothing with Trend, $\alpha = 0.2$, $\beta = 0.5$.

<table>
<thead>
<tr>
<th>Month</th>
<th>$A(t)$</th>
<th>$F(t-1)$</th>
<th>Trend of $A(t)$</th>
<th>Trend of $T(t)$</th>
<th>$f(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10.00</td>
<td>0.00</td>
<td>-1.00</td>
<td>-1.00</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>10.40</td>
<td>0.20</td>
<td>1.20</td>
<td>11.60</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>10.88</td>
<td>0.28</td>
<td>2.48</td>
<td>13.36</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>11.18</td>
<td>0.34</td>
<td>3.74</td>
<td>14.92</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>12.20</td>
<td>0.67</td>
<td>6.01</td>
<td>18.21</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>13.09</td>
<td>0.76</td>
<td>4.39</td>
<td>17.45</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>14.70</td>
<td>1.14</td>
<td>5.56</td>
<td>20.26</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>16.28</td>
<td>1.81</td>
<td>7.39</td>
<td>23.67</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>17.74</td>
<td>1.71</td>
<td>6.22</td>
<td>24.52</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>19.26</td>
<td>2.47</td>
<td>8.74</td>
<td>27.95</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
<td>20.77</td>
<td>3.00</td>
<td>9.68</td>
<td>29.75</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>22.77</td>
<td>3.60</td>
<td>10.36</td>
<td>30.93</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>24.80</td>
<td>3.30</td>
<td>10.08</td>
<td>33.17</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>26.25</td>
<td>3.35</td>
<td>10.49</td>
<td>35.34</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>28.57</td>
<td>3.39</td>
<td>10.58</td>
<td>36.86</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>30.89</td>
<td>3.48</td>
<td>10.72</td>
<td>38.62</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>33.15</td>
<td>3.58</td>
<td>10.86</td>
<td>40.64</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>35.49</td>
<td>3.68</td>
<td>10.94</td>
<td>42.73</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>37.89</td>
<td>3.78</td>
<td>10.98</td>
<td>44.87</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>40.49</td>
<td>3.88</td>
<td>11.02</td>
<td>46.97</td>
</tr>
</tbody>
</table>

Note: we start with trend equal to zero.
Exponential Smoothing with Trend, $\alpha=0.2$, $\beta=0.5$

Effects of Altering Smoothing Constants

Exponential Smoothing with Trend: various values of α and β

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>MAD</th>
<th>MSD</th>
<th>BIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>10.23</td>
<td>146.94</td>
<td>-10.23</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1</td>
<td>4.30</td>
<td>30.14</td>
<td>-3.45</td>
</tr>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>8.27</td>
<td>95.31</td>
<td>-8.27</td>
</tr>
<tr>
<td>0.4</td>
<td>0.2</td>
<td>3.89</td>
<td>23.78</td>
<td>-2.34</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3</td>
<td>6.83</td>
<td>64.91</td>
<td>-6.69</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
<td>3.77</td>
<td>22.25</td>
<td>-1.77</td>
</tr>
<tr>
<td>0.1</td>
<td>0.4</td>
<td>5.83</td>
<td>47.17</td>
<td>-5.43</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>3.75</td>
<td>22.11</td>
<td>-1.46</td>
</tr>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>5.16</td>
<td>36.88</td>
<td>-4.42</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>3.76</td>
<td>22.36</td>
<td>-1.29</td>
</tr>
<tr>
<td>0.1</td>
<td>0.6</td>
<td>4.69</td>
<td>30.91</td>
<td>-3.62</td>
</tr>
<tr>
<td>0.4</td>
<td>0.6</td>
<td>3.79</td>
<td>22.67</td>
<td>-1.18</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>6.48</td>
<td>60.55</td>
<td>-6.29</td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>4.13</td>
<td>27.44</td>
<td>-2.84</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>5.04</td>
<td>37.04</td>
<td>-4.49</td>
</tr>
<tr>
<td>0.5</td>
<td>0.2</td>
<td>3.91</td>
<td>23.61</td>
<td>-1.94</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>4.26</td>
<td>27.56</td>
<td>-3.29</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3</td>
<td>3.88</td>
<td>23.02</td>
<td>-1.49</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>3.9</td>
<td>23.75</td>
<td>-2.51</td>
</tr>
<tr>
<td>0.5</td>
<td>0.4</td>
<td>3.9</td>
<td>23.26</td>
<td>-1.25</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>3.73</td>
<td>22.32</td>
<td>-2.02</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>3.94</td>
<td>23.73</td>
<td>-1.1</td>
</tr>
<tr>
<td>0.2</td>
<td>0.6</td>
<td>3.65</td>
<td>21.94</td>
<td>-1.71</td>
</tr>
<tr>
<td>0.5</td>
<td>0.6</td>
<td>3.97</td>
<td>24.27</td>
<td>-1.08</td>
</tr>
</tbody>
</table>

Note: these assume we start with trend equal to zero.
Effects of Altering Smoothing Constants (cont.)

Observations: assuming we start with zero trend
- $\alpha = 0.3$, $\beta = 0.5$ work well for MAD and MSD
- $\alpha = 0.6$, $\beta = 0.6$ work better for BIAS
- Our original choice of $\alpha = 0.2$, $\beta = 0.5$ had MAD = 3.73, MSD = 22.32, BIAS = -2.02, which is pretty good, although $\alpha = 0.3$, $\beta = 0.5$, with MAD = 3.65, MSD=21.78, BIAS = -1.32 is better.

Winters Method for Seasonal Series

Seasonal series: a series that has a pattern that repeats every N periods for some value of N (which is at least 3).

Seasonal factors: a set of multipliers c_t, representing the average amount that the demand in the tth period of the season is above or below the overall average.

Winter's Method:
- The series: $F(t) = \alpha(A(t)/A(t-N)) + (1-\alpha)(F(t-1) + T(t-1))$
- The trend: $T(t) = \beta(F(t)-F(t-1)) + (1-\beta)T(t-1)$
- The seasonal factors: $c(t) = \gamma(A(t)/F(t)) + (1-\gamma)c(t-N)$
- The forecast: $F(t+\tau) = (F(t)+\tau)c(t)+T(t)\tau-N)$, $t+\tau = N+1, 2N$

Winters Method - Sample Calculations

Initially we set:
- smoothing estimate = first season average
- smoothed trend = zero ($T(N)=T(12) = 0$)
- seasonality factor = ratio of actual to average demand

From period 13 on we can use initial values and standard formulas...

$$F(12) = \frac{A(12)}{12} = \frac{4+2+4+4}{12} = 0.33$$
$$c(t) = \frac{A(t)}{F(t)} = \frac{3}{13}$$

$$F(13) = \alpha(A(13)/A(3-12)) + (1-\alpha)(F(12) + T(12)) = \alpha(0.33/0.48) + (1-\alpha)(0.33 + 0.33) = 0.34$$
$$T(13) = \beta(F(13)-F(12)) + (1-\beta)T(12) = 0.34 - 0.33 + (1-0.33) = 0.30$$
$$c(13) = \gamma(A(13)/F(13)) + (1-\gamma)c(12) = 0.33(0.33 + 0.33) = 0.41$$
Winters Method Example

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Date</th>
<th>Actual</th>
<th>Base</th>
<th>Seasonal</th>
<th>Trend</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>Jan</td>
<td>1</td>
<td>4</td>
<td>---</td>
<td>---</td>
<td>0.480</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Feb</td>
<td>2</td>
<td>2</td>
<td>---</td>
<td>---</td>
<td>0.240</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Mar</td>
<td>3</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>0.600</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Apr</td>
<td>4</td>
<td>8</td>
<td>---</td>
<td>---</td>
<td>0.960</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>May</td>
<td>5</td>
<td>11</td>
<td>---</td>
<td>---</td>
<td>1.320</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Jun</td>
<td>6</td>
<td>13</td>
<td>---</td>
<td>---</td>
<td>1.560</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Jul</td>
<td>7</td>
<td>18</td>
<td>---</td>
<td>---</td>
<td>2.160</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Aug</td>
<td>8</td>
<td>15</td>
<td>---</td>
<td>---</td>
<td>1.940</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Sep</td>
<td>9</td>
<td>9</td>
<td>---</td>
<td>---</td>
<td>1.080</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Oct</td>
<td>10</td>
<td>6</td>
<td>---</td>
<td>---</td>
<td>0.720</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Nov</td>
<td>11</td>
<td>5</td>
<td>---</td>
<td>---</td>
<td>0.600</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Dec</td>
<td>12</td>
<td>4</td>
<td>8.33</td>
<td>0.00</td>
<td>0.480</td>
<td>---</td>
</tr>
</tbody>
</table>

1998

<table>
<thead>
<tr>
<th>Month</th>
<th>Date</th>
<th>Actual</th>
<th>Base</th>
<th>Seasonal</th>
<th>Trend</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan</td>
<td>13</td>
<td>5</td>
<td>8.54</td>
<td>0.02</td>
<td>0.491</td>
<td>4.00</td>
</tr>
<tr>
<td>Feb</td>
<td>14</td>
<td>4</td>
<td>9.37</td>
<td>0.10</td>
<td>0.259</td>
<td>2.06</td>
</tr>
<tr>
<td>Mar</td>
<td>15</td>
<td>7</td>
<td>9.69</td>
<td>0.12</td>
<td>0.612</td>
<td>4.48</td>
</tr>
<tr>
<td>Apr</td>
<td>16</td>
<td>7</td>
<td>9.87</td>
<td>0.12</td>
<td>0.937</td>
<td>9.43</td>
</tr>
<tr>
<td>May</td>
<td>17</td>
<td>16</td>
<td>10.06</td>
<td>0.13</td>
<td>1.341</td>
<td>12.76</td>
</tr>
<tr>
<td>Jun</td>
<td>18</td>
<td>17</td>
<td>10.54</td>
<td>0.14</td>
<td>1.752</td>
<td>15.52</td>
</tr>
<tr>
<td>Jul</td>
<td>19</td>
<td>17</td>
<td>11.02</td>
<td>0.15</td>
<td>2.178</td>
<td>17.17</td>
</tr>
<tr>
<td>Aug</td>
<td>20</td>
<td>18</td>
<td>11.50</td>
<td>0.15</td>
<td>2.600</td>
<td>18.94</td>
</tr>
<tr>
<td>Sep</td>
<td>21</td>
<td>12</td>
<td>10.60</td>
<td>0.14</td>
<td>0.896</td>
<td>11.00</td>
</tr>
<tr>
<td>Oct</td>
<td>22</td>
<td>7</td>
<td>10.98</td>
<td>0.13</td>
<td>0.713</td>
<td>7.86</td>
</tr>
<tr>
<td>Nov</td>
<td>23</td>
<td>4</td>
<td>13.37</td>
<td>0.17</td>
<td>0.480</td>
<td>5.83</td>
</tr>
</tbody>
</table>

Conclusions

- **Sensitivity:** Lower values of \(m \) or higher values of \(\alpha \) will make moving average and exponential smoothing models (without trend) more sensitive to data changes (and hence less stable).
- **Trends:** Models without a trend will underestimate observations in time series with an increasing trend and overestimate observations in time series with a decreasing trend.
- **Smoothing Constants:** Choosing smoothing constants is an art; the best we can do is choose constants that fit past data reasonably well.
- **Seasonality:** Methods exist for fitting time series with seasonal behavior (e.g., Winters method), but require more past data to fit than the simpler models.
- **Judgement:** No time series model can anticipate structural changes not signaled by past observations; these require judicious overriding of the model by the user.
Shop Floor Control

Even a journey of one thousand li begins with a single step.

– Lao Tze

It is a melancholy thing to see how zeal for a good thing abates when the novelty is over, and when there is no pecuniary reward attending the service.

– Earl of Egmont

What is Shop Floor Control?

Definition: Shop Floor Control (SFC) is the process by which decisions directly affecting the flow of material through the factory are made.

Functions:
- WIP Tracking
- Throughput Tracking
- Status Monitoring
- Work Forecasting
- Capacity Feedback
- Quality Control
- Material Flow Control

Planning for SFC

Gross Capacity Control: Match line to demand via:
- Varying staffing (no. shifts or no. workers/shift)
- Varying length of work week (or work day)
- Using outside vendors to augment capacity

Bottleneck Planning:
- Bottlenecks can be designed
- Cost of capacity is key
- Stable bottlenecks are easier to manage

Span of Control:
- Physically or logically decompose system
- Span of labor management (10 subordinates)
- Span of process management (related technology?)
Basic CONWIP

Rationale:
• Simple starting point
• Can be effective

Requirements:
• Constant routings
• Similar processing times (stable bottleneck)
• No significant setups
• No assemblies

Design Issues:
• Work backlog – how to maintain and display
 • Line discipline – FIFO, limited passing
• Card counts – WIP = CT \times r_i initially, then conservative adjustments
• Card deficits – violate WIP-cap in special circumstances
• Work ahead – how far ahead relative to due date?

CONWIP Line Using Cards

Card Deficits
Tandem CONWIP Lines

Links to Kanban: when “loops” become single process centers

Bottleneck Treatment:
- Nonbottleneck loops coupled to buffer inventories (cards are released on departure from buffer)
- Bottleneck loops uncoupled from buffer inventories (cards are released on entry into buffer)

Shared Resources:
- Sequencing policy is needed
- Upstream buffer facilitates sequencing (and batching if necessary)
Modifications of Basic CONWIP

Multiple Product Families:
- Capacity-adjusted WIP
- CONWIP Controller

Assembly Systems:
- CONWIP achieves synchronization naturally (unless passing is allowed)
- WIP levels must be sensitive to “length” of fabrication lines
CONWIP Assembly

Processing Times for Line A

1. 2. 3. 4.

Processing Times for Line B

3. 3. 2.

Kanban

Advantages:
- Improved communication
- Control of shared resources

Disadvantages:
- Complexity – setting WIP levels
- Tighter pacing – pressure on workers, less opportunity for work ahead
- Part-specific cards – can’t accommodate many active part numbers
- Inflexible to product mix changes
- Handles small, infrequent orders poorly

Kanban with Work Backlog

- Standard Container
- Card
Pull From the Bottleneck

Problems with CONWIP/Kanban:
- Bottleneck starvation due to downstream failures
- Premature releases due to CONWIP requirements

PFB Remedies:
- PFB ignores WIP downstream of bottleneck
- PFB launches orders when bottleneck can accommodate them

PFB Problem:
- Floating bottlenecks

Simple Pull From the Bottleneck

Material Flow

Card Flow

Routings in a Jobshop
Implementing PFB

Notation:
- b_i: The time required on the bottleneck by job i on the backlog.
- r_i: The average time after release required for jobs to reach the bottleneck.
- L: The specified time for jobs to wait in the buffer in front of the bottleneck.

Work at Bottleneck: total hours of work ahead of job j is
$$\sum b_i$$

Job Release Mechanism: Release job j whenever
$$\sum b_i \leq r_i + L$$

Enhancement: establish due date window, before which jobs are not released.

Production Tracking

Short Term:
- Statistical Throughput Control (STC)
- Progress toward quota
- Overtime decisions

Long Term:
- Long range tracking
- Capacity feedback
- Synchronize planning models to reality

STC Notation

R: length of regular time
μ: mean production during regular time
σ: standard deviation of regular time production
Q: production quota
N: production in $[0,1]$ $\quad \sum b_i \leq r_i + L$
T: time to make quota in n^σ regular time period

μ_r: mean time to make quota, $E[T]\nand \sigma_r$: std dev of time to make quota, $\sqrt{\text{Var}(T)}$

Note: we might have these instead of μ and σ if we stop when quota is made.
Assumption: N_t is normally distributed with mean μ_t/R and variance σ^2_t/R.

Implications:
- $N_t - Q/R$ is normally distributed with mean $(\mu_t - Q)/R$ and variance σ^2_t/R.
- If $N_t = n_t$, where $n_t - Q/R = x$, we will miss quota only if $N_t < Q - n_t$.

Formula: The probability of missing quota by time R given an overage of x is

$$P(N_t \leq Q - n_t - x/R) = P(N_t - Q/R \leq x/R)$$

$$= \Phi \left(\frac{Q - \mu_t - Q/R - x/R}{\sigma_t \sqrt{R - 1/R}} \right)$$

STC Charts

Motivation: information "at a glance"

Computations: Pre-compute the overage levels that cause the probability of missing quota to be a specified level α:

$$\frac{Q - \mu_t - Q/R - x/R}{\sigma_t \sqrt{R - 1/R}} = \alpha$$

which yields

$$x = (\mu - Q/R - x/R - \sigma_t \sqrt{R - 1/R})$$

where $\Phi(\alpha)$ is chosen such that $\Phi(\alpha) = \alpha$.
Long-Range Tracking

Statistics of Interest:
- μ: mean production during regular time
- σ^2: variance of regular time production

Observable Statistics: if we stop when quota is achieved, then instead of μ and σ we observe
- μ_S: mean time to make quota
- σ^2_S: variance of time to make quota

Conversion Formulas: If we have μ_S and σ^2_S, then we can smooth these (as shown later) and then convert to μ and σ by using

$$
\mu = \frac{RQ}{\mu_S}, \quad \sigma^2 = \frac{\sigma^2_S (RQ)}{\mu_S^2}
$$

Smoothing Capacity Parameters

Mean Production:
$$
\hat{\mu}(n) = a\hat{\mu}_{n-1} + (1-a)(\hat{\mu}(n-1) + \bar{T}_{n-1})
$$
$$
\hat{T}(n) = \beta(\hat{\mu}(n) - \hat{\mu}(n-1)) + (1-\beta)\hat{T}(n-1)
$$
where α and β are smoothing constants.

Production Variance:
$$
\hat{\sigma}^2(n) = \gamma(Y_{n-1} - \hat{\mu}(n))^2 + (1-\gamma)\hat{\sigma}^2(n-1)
$$
where γ is a smoothing constant.
Shop Floor Control Takeaways

General:
- SFC is more than material flow control (WIP tracking, QC, status monitoring, …)
- good SFC requires planning (workforce policies, bottlenecks, management, …)

CONWIP:
- simple starting point
- reduces variability due to WIP fluctuations
- many modifications possible (kanban, pull-from-bottleneck)

Shop Floor Control Takeaways (cont.)

Statistical Throughput Control (STC):
- tool for OT planning/prediction
- intuitive graphical display

Long Range Tracking:
- feedback for other planning/control modules
- exponential smoothing approach