Problem 1:

1. Identify all of the nodes. Assume the ground node is the reference node and that its voltage is known to be zero. Assume V_{s1}, V_{s2}, I_s, and R_s are given.

2. List the node voltages that are known (if any).

3. Of the unknown node voltages, list the node voltages that are independent (if any).

4. Of the unknown node voltages, list the node voltages that are dependent (if any).

5. Write the equations to solve for all of the unknown node voltages by node analysis.

6. Box the equations you would use to solve the system.
 a. Reduce to the form of: $[1/R_1 + 1/R_3][V_1] + [1/R_3][V_2] = V_{s1}/R_4$ (this is not one of the equations – just an example of the level of reduction desired in solution)

7. List the unknown quantities you are solving for: V_1, V_2, V_4

8. Write an equation to solve for the current through R_3 in terms of node voltages. $\Rightarrow \frac{V_2 - V_4}{R_3} = i_{3}$

9. Write an equation to solve for the voltage across R_4 in terms of node voltages. $\Rightarrow V_{E3} = V_4 - V_2$

KCL

1. $I_1 - I_2 - I_{s1} = 0$
2. $V_1 - V_2 - I_2 R_3 = 0$
3. $I_5 - I_2 - I_3 = 0$
4. $V_{s2} - V_4 = 0$

KVL

1. $\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} = 0$
2. $\frac{V_2}{R_2} + \frac{V_3}{R_3} = 0$
3. $\frac{V_3}{R_3} = 0$

Combined Node/Loop

1. $I_1 - I_2 - I_{s1} = 0$
2. $V_1 - V_2 - I_2 R_3 = 0$
3. $I_5 - I_2 - I_3 = 0$

Final Equations

1. $I_1 = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}$
2. $\frac{V_2}{R_2} + \frac{V_3}{R_3} = 0$
3. $\frac{V_3}{R_3} = 0$
4. $I_5 = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}$

Name: SOLUTION