1. Prove that the equation of motion

\[M \frac{d^2 u_s}{dt^2} = C \left(u_{s+1} + u_{s-1} - 2u_s \right) \]

in the long wavelength limit \(Ka << 1 \) is equivalent to the continuum elastic wave equation

\[\frac{\partial^2 u_s}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2} \]

in which \(v \) is the velocity of sound.

2. Consider the normal modes of a linear chain in which the force constants between nearest-neighbor atoms are alternatively \(C \) and \(10C \). Assuming that the masses are equal and the nearest neighbor separation is \(a/2 \) find (a) \(\omega(k) \); (b) the values of \(\omega(k) \) at \(k = 0 \) and \(k = \pi/a \); (c) long-wavelength limit of the spectrum.

3. Consider a linear chain with a basis of two different atoms with masses \(M_1 \) and \(M_2 \) in the approximation when only nearest neighbors interact and \(M_1 >> M_2 \).

(a) Find the ratio of amplitudes \(u/v \) for two branches at the Brillouin zone boundary \(K = K_{max} \).

(b) Discuss the form of the dispersion relation and the nature of the vibration modes.

4. Problem # 4, (Kittel, Chapter 4)