Do problems:

from "Linear System Theory and Design" by Chi–Tsong Chen, published by Holt, Rinehart, and Winston, 1984 -- see attached scan.
2-12 Consider Table 2-1. Suppose the representations of \(b, e_1, e_2, e_3 \), and \(e_4 \) with respect to the basis \(\{e_1, e_2, e_3\} \) are known. Use Equation (2-20) to derive the representations of \(b, e_1, e_2, e_3 \), and \(e_4 \) with respect to the basis \(\{e_1, e_2\} \).

2-13 Show that similar matrices have the same characteristic polynomial, and consequently, the same set of eigenvalues. \([HINT: \det(AB) = \det A \det B]\)

2-14 Find the \(P \) matrix in Example 3, Section 2-4, and verify \(A = PAP^{-1} \).

2-15 Given

\[
\begin{align*}
A &= \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} & b &= \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} & \tilde{b} &= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
\end{align*}
\]

what are the representations of \(A \) with respect to the basis \(\{b, Ab, A^2b, A^3b\} \) and the basis \(\{b, Ab, A^2b, A^3b\} \)? (Note that the representations are the same!)

2-16 What are the ranks and nullities of the following matrices?

\[
\begin{align*}
A_1 &= \begin{bmatrix} 4 & 1 & -1 \\ 3 & 2 & -3 \\ 1 & 3 & 0 \end{bmatrix} & A_2 &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} & A_3 &= \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 1 & 2 \\ 3 & 4 & 5 & 0 & 0 \end{bmatrix}
\end{align*}
\]

2-17 Find the bases of the range spaces and the null spaces of the matrices given in Problem 2-16.

2-18 Are the matrices

\[
\begin{bmatrix} s^3 + s^2 & s^2 + 1 \\ s & 1 \end{bmatrix} \quad \begin{bmatrix} s^2 + 1 \\ s^2 \end{bmatrix}
\]

nonsingular in the field of rational functions with real coefficients \(\mathbb{R}(s) \)? For every \(s \) in \(\mathbb{C} \), the matrices become numerical matrices with elements in \(\mathbb{C} \). For every \(s \) in \(\mathbb{C} \), are the matrices nonsingular in the field of complex numbers \(\mathbb{C} \)?

2-19 Does there exist a solution for the following linear equations?

\[
\begin{bmatrix} 3 & 3 & 0 \\ 2 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 3 \end{bmatrix}
\]

If so, find one.

2-20 Consider the set of linear equations

\[
x(n) = A^4 x(0) + A^{n-1} b_0(0) + A^{n-2} b_0(1) + \cdots + A b_0(n-2) + b_0(n-1)
\]

where \(A \) is an \(n \times n \) constant matrix and \(b \) is an \(n \times 1 \) column vector. Given any \(x(n) \) and \(x(0) \), under what conditions on \(A \) and \(b \) will there exist \(u(0), u(1), \ldots, u(n-1) \) satisfying the equation? \([HINT: \text{Write the equation in the form}]

\[
x(n) - A^4 x(0) = \begin{bmatrix} b & A b & \cdots & A^{n-2} b \\ u(n-1) \\ u(n-2) \\ \vdots \\ u(0) \end{bmatrix}
\]

2-21 Find the Jordan-canonical-form representations of the following matrices:

\[
A_1 = \begin{bmatrix}
1 & 4 & 10 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix}, \quad A_2 = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & -4 & -3
\end{bmatrix}, \\
A_3 = \begin{bmatrix}
0 & 4 & 3 \\
0 & -150 & -120 \\
0 & 200 & 160
\end{bmatrix}, \quad A_4 = \begin{bmatrix}
0 & 4 & 3 \\
0 & 20 & 16 \\
0 & -25 & -20
\end{bmatrix}, \\
A_5 = \begin{bmatrix}
\frac{2}{5} & \frac{21}{5} & 14 \\
-\frac{5}{2} & -\frac{3}{2} & -2 \\
-\frac{1}{2} & -\frac{3}{2} & -2
\end{bmatrix}, \quad A_6 = \begin{bmatrix}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

2-22 Let \(\lambda_i \) for \(i = 1, 2, \ldots, n \) be the eigenvalues of an \(n \times n \) matrix \(A \). Show that

\[
\det A = \prod_{i=1}^{n} \lambda_i
\]

2-23 Prove that a square matrix is nonsingular if and only if there is no zero eigenvalue.

2-24 Under what condition will \(AB = AC \) imply \(B = C \)? (\(A \) is assumed to be a square matrix.)

2-25 Show that the Vandermonde determinant

\[
\begin{vmatrix}
1 & 1 & \cdots & 1 \\
\lambda_1 & \lambda_2 & \cdots & \lambda_n \\
\lambda_1^2 & \lambda_2^2 & \cdots & \lambda_n^2 \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1}
\end{vmatrix}
\]

is equal to \(\prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i) \).

2-26 Consider the matrix

\[
A = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-\alpha_n & -\alpha_{n-1} & -\alpha_{n-2} & \cdots & -\alpha_1
\end{bmatrix}
\]

Show that the characteristic polynomial of \(A \) is

\[
\Delta(\lambda) \triangleq \det(\lambda I - A) = \lambda^n + \alpha_1 \lambda^{n-1} + \alpha_2 \lambda^{n-2} + \cdots + \alpha_{n-1} \lambda + \alpha_n
\]

If \(\lambda_1 \) is an eigenvalue of \(A \) (that is, \(\Delta(\lambda_1) = 0 \)), show that \(\begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{n-1} \end{bmatrix} \) is an eigenvector associated with \(\lambda_1 \). (The matrix \(A \) is called the companion matrix of the polynomial \(\Delta(\lambda) \). It is said to be in the Frobenius form in the numerical analysis literature.)
2-27 Consider the matrix shown in Problem 2-26. Suppose that \(\lambda_1 \) is an eigenvalue of the matrix with multiplicity \(k \); that is, \(\Delta(\lambda) \) contains \((\lambda - \lambda_1)^k \) as a factor. Verify that the following \(k \) vectors,

\[
\begin{bmatrix}
1 \\
\lambda_1 \\
\lambda_1^2 \\
\vdots \\
\lambda_1^{n-2} \\
(n-1)\lambda_1^{n-3} \\
\frac{(n-1)}{2} \lambda_1^{n-4} \\
\frac{(n-1)}{3} \lambda_1^{n-5} \\
\vdots \\
\frac{(n-1)(n-2)}{i(i-1)} \lambda_1^{n-i-1} \\
\end{bmatrix}
\]

where

\[
\delta_i = \frac{(n-1)(n-2) \cdots (n-i)}{1 \cdot 2 \cdot 3 \cdots i} \quad i \geq 1
\]

are generalized eigenvectors of \(A \) associated with \(\lambda_1 \).

2-28 Show that the matrix \(A \) in Problem 2-26 is nonsingular if and only if \(a_n \neq 0 \). Verify that its inverse is given by

\[
A^{-1} = \begin{bmatrix}
-a_{n-1}/a_n & -a_{n-2}/a_n & \cdots & -a_1/a_n & -1/a_n \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
\end{bmatrix}
\]

2-29 Show that the determinant of the \(m \times m \) matrix

\[
\begin{bmatrix}
s^m & -1 & 0 & \cdots & 0 & 0 \\
0 & s^{m-1} & -1 & \cdots & 0 & 0 \\
0 & 0 & s^{m-2} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & s^2 & -1 \\
\beta_m(s) & \beta_{m-1}(s) & \beta_{m-2}(s) & \cdots & \beta_2(s) & s^1 + \beta_1(s) \\
\end{bmatrix}
\]

is equal to

\[s^n + \beta_1(s) s^{n-k_1} + \beta_2(s) s^{n-k_2} + \cdots + \beta_n(s)\]

where \(n = k_1 + k_2 + \cdots + k_m \) and \(\beta_i(s) \) are arbitrary polynomials.

2-30 Show that the characteristic polynomial of the matrix

\[
\begin{bmatrix}
0 & 1 & \cdots & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 & \cdots & 0 & 0 \\
-a_{21,m_1} & -a_{21,m-1} & \cdots & -a_{21,2} & -a_{21,1} & \cdots & -a_{21,2} & -a_{21,1} \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \\
-a_{21,m} & -a_{21,m-1} & \cdots & -a_{21,2} & -a_{21,1} & \cdots & -a_{21,2} & -a_{21,1} \\
\end{bmatrix}
\]
is given by
\[
\det \begin{bmatrix}
\Delta_{11}(s) & \Delta_{12}(s) \\
\Delta_{21}(s) & \Delta_{22}(s)
\end{bmatrix} = \Delta_{11}(s)\Delta_{22}(s) - \Delta_{12}(s)\Delta_{21}(s)
\]
where
\[
\begin{aligned}
\Delta_{i1}(s) &= s^n + a_{i1} s^{n-1} + \cdots + a_{i(n-1)} s + a_{in} \\
\Delta_{i2}(s) &= a_{i1} s^{n-1} + \cdots + a_{i(n-1)} s + a_{ij}
\end{aligned}
\]
Note that the submatrices on the diagonal are of the companion form (see Problem 2.26); the submatrices not on the diagonal are all zeros except the last row.

2-31 Find the characteristic polynomials and the minimal polynomials of the following matrices:
\[
\begin{bmatrix}
\lambda_1 & 1 & 0 & 0 \\
0 & \lambda_1 & 1 & 0 \\
0 & 0 & \lambda_1 & 1 \\
0 & 0 & 0 & \lambda_2
\end{bmatrix},
\begin{bmatrix}
\lambda_1 & 1 & 0 & 0 \\
0 & \lambda_1 & 1 & 0 \\
0 & 0 & \lambda_1 & 0 \\
0 & 0 & 0 & \lambda_1
\end{bmatrix},
\begin{bmatrix}
\lambda_1 & 1 & 0 & 0 \\
0 & \lambda_1 & 0 & 0 \\
0 & 0 & \lambda_1 & 1 \\
0 & 0 & 0 & \lambda_1
\end{bmatrix},
\begin{bmatrix}
\lambda_1 & 1 & 0 & 0 \\
0 & \lambda_1 & 0 & 0 \\
0 & 0 & \lambda_1 & 0 \\
0 & 0 & 0 & \lambda_1
\end{bmatrix}
\]
What are the multiplicities and indices? What are their geometric multiplicities?

2-32 Show that if \(\lambda \) is an eigenvalue of \(A \) with eigenvector \(x \), then \(f(\lambda) \) is an eigenvalue of \(f(A) \) with the same eigenvector \(x \).

2-33 Repeat the problems in Examples 2 and 3 of Section 2.7 by choosing, respectively, \(g(\lambda) = \lambda \alpha_0 + \alpha_1 (\lambda - 1) \) and \(g(\lambda) = \alpha_0 (\lambda - 1) + \alpha_1 (\lambda - 1)^2 (\lambda - 2) + \alpha_2 (\lambda - 2) \).

2-34 Given
\[
A = \begin{bmatrix}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]
Find \(A^{10}, A^{103}, \) and \(e^{\lambda x} \).

2-35 Compute \(e^{\lambda x} \) for the matrices
\[
\begin{bmatrix}
1 & 4 & 10 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix},
\begin{bmatrix}
0 & 4 & 3 \\
0 & -150 & -120 \\
0 & 200 & 160
\end{bmatrix}
\]
by using Definition 2.16 and by using the Jordan-form representation.

2-36 Show that functions of the same matrix commute, that is,
\[
f(A)g(A) = g(A)f(A)
\]
Consequently, we have \(A e^{\lambda x} = e^{\lambda x} A \).

2-37 Let
\[
C = \begin{bmatrix}
\lambda_2 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3
\end{bmatrix}
\]
Find a matrix \(B \) such that \(e^B = C \). Show that if \(\lambda_i = 0 \) for some \(i \) then the matrix \(B \) does
not exist. Let

\[C = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \]

Find a matrix B such that \(\phi = C \). \([\text{Hint: Let } f(\lambda) = \log \lambda \text{ and use (2.69).} \] Is it true that for any nonsingular matrix C, there exists a matrix B such that \(\phi = C \)?

2-38 Let \(A \) be an \(n \times n \) matrix. Show by using the Cayley–Hamilton theorem that any \(A^k \) with \(k \geq n \) can be written as a linear combination of \(\{I, A, \ldots, A^{n-1}\} \). If the degree of the minimal polynomial of \(A \) is known, what modification can you make?

2-39 Define

\[(sI - A)^{-1} \triangleq \frac{1}{\Delta(s)} [R_0 s^{n-1} + R_1 s^{n-2} + \cdots + R_{n-2} s + R_{n-1}] \]

where \(\Delta(s) \triangleq \det(sI - A) \triangleq s^n + \alpha_1 s^{n-1} + \alpha_2 s^{n-2} + \cdots + \alpha_n \) and \(R_0, R_1, \ldots, R_{n-1} \) are constant matrices. This definition is valid because the degree in \(s \) of the adjoint of \((sI - A)\) is at most \(n - 1 \). Verify that

\[
\begin{align*}
\alpha_1 &= -\frac{\text{tr} AR_0}{1}, & R_0 &= I \\
\alpha_2 &= -\frac{\text{tr} AR_1}{2}, & R_1 &= AR_0 + \alpha_1 I = A + \alpha_1 I \\
\alpha_3 &= -\frac{\text{tr} AR_2}{3}, & R_2 &= AR_1 + \alpha_2 I = A^2 + \alpha_2 A + \alpha_1 I \\
\alpha_{n-1} &= -\frac{\text{tr} AR_{n-2}}{n-1}, & R_{n-1} &= AR_{n-2} + \alpha_{n-2} I = A^{n-1} + \alpha_{n-2} A + \alpha_{n-1} I \\
\alpha_n &= -\frac{\text{tr} AR_{n-1}}{n}, & R_n &= 0 = AR_{n-1} + \alpha_n I
\end{align*}
\]

where \(\text{tr} \) stands for the trace and is defined as the sum of all the diagonal elements of a matrix. This procedure of computing \(\alpha_i \) and \(R_i \) is called the Leverrier algorithm. \([\text{Hint: The right-hand-side equations can be verified from } \Delta(s)I = (sI - A)(R_0 s^{n-1} + R_1 s^{n-2} + \cdots + R_{n-2} s + R_{n-1}). \] For a derivation of the left-hand-side equations, see Reference S185.]

2-40 Prove the Cayley–Hamilton theorem. \([\text{Hint: Use Problem 2-39 and eliminate } R_{n-1}, R_{n-2}, \ldots, \text{from } 0 = AR_{n-1} + \alpha_n I] \]

2-41 Show, by using Problem 2-39,

\[(sI - A)^{-1} = \frac{1}{\Delta(s)} [A^{n-1} + (s + \alpha_1)A^{n-2} + (s^2 + \alpha_1 s + \alpha_2)A^{n-3} + \cdots + (s^{n-1} + \alpha_{n-2} s^{n-2} + \cdots + \alpha_n I)] \]

2-42 Let

\[(sI - A)^{-1} = \frac{1}{\Delta(s)} \text{ Adjoint } (sI - A) \]
and let \(m(s) \) be the monic greatest common divisor of all elements of Adjoint \((sI - A) \). Show that the minimal polynomial of \(A \) is equal to \(\Delta(s) / m(s) \).

2-43 Let all eigenvalues of \(A \) be distinct and let \(q_i \) be a (right) eigenvector of \(A \) associated with \(\lambda_i \), that is, \(Aq_i = \lambda_i q_i \). Define \(Q = [q_1, q_2, \ldots, q_n] \) and define

\[
P = Q^{-1} \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}
\]

where \(p_i \) is the \(i \)th row of \(P \). Show that \(p_i \) is a left eigenvector of \(A \) associated with \(\lambda_i \), that is, \(p_i A = \lambda_i p_i \).

2-44 Show that if all eigenvalues of \(A \) are distinct, then \((sI - A)^{-1} \) can be expressed as

\[
(sI - A)^{-1} = \sum_{s = \lambda_i} \frac{1}{s - \lambda_i} q_i p_i
\]

where \(q_i \) and \(p_i \) are right and left eigenvectors of \(A \) associated with \(\lambda_i \).

2-45 A matrix \(A \) is defined to be cyclic if its characteristic polynomial is equal to its minimal polynomial. Show that \(A \) is cyclic if and only if there is only one Jordan block associated with each distinct eigenvalue.

2-46 Consider the matrix equation

\[
P E P + D P + P F + G = 0
\]

where all matrices are \(n \times n \) constant matrices. It is called an algebraic Riccati equation.

Define

\[
M = \begin{bmatrix} -F & -E \\ G & D \end{bmatrix}
\]

Let

\[
Q = \begin{bmatrix} Q_1 & Q_2 \\ Q_3 & Q_4 \end{bmatrix}
\]

consist of all generalized eigenvectors of \(M \) so that \(Q^{-1} M Q = J \) is in a Jordan canonical form. We write

\[
\begin{bmatrix} -F & -E \\ G & D \end{bmatrix} \begin{bmatrix} Q_1 & Q_2 \\ Q_3 & Q_4 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \\ Q_3 & Q_4 \end{bmatrix} \begin{bmatrix} J_1 & 0 \\ 0 & J_2 \end{bmatrix}
\]

Show that if \(Q_1 \) is nonsingular, then \(P = Q_2 Q_1^{-1} \) is a solution of the Riccati equation.

2-47 Give three different norms of the vector \(x = [1 \quad -4 \quad 3] \).

2-48 Verify the three norms of \(A \) in Figure 2-7.

2-49 Show that the set of all piecewise continuous complex-valued functions defined over \([0, \infty)\) forms a linear space over \(\mathbb{C} \). Show that

\[
\langle g, h \rangle \triangleq \int_0^\infty g^*(t) h(t) \, dt
\]

31 See Reference SA.
qualifies as an inner product of the space, where \(g \) and \(h \) are two arbitrary functions of the space. What is the form of the Schwarz inequality in this space?

\[\textbf{2-50} \] Show that an \(n \times n \) matrix \(A \) has the property \(A^k = 0 \) for \(k > m \) if and only if \(A \) has eigenvalue 0 with multiplicity \(n \) and index \(m \). A matrix with the property \(A^k = 0 \) is called a \textit{nilpotent matrix}. [\textit{Hint: Use Equation (2-64) and Jordan canonical form.}]

\[\textbf{2-51} \] Let \(A \) be an \(m \times n \) matrix. Show that the set of all \(1 \times m \) vectors \(y \) satisfying \(yA = 0 \) forms a linear space, called the left null space of \(A \), of dimension \(m - \rho(A) \).