Problem 1

Given the circuit below find the following. Note that the binary number is represented by the output of the flip-flops with Q_1 being the LSB and Q_2 being the MSB.

1. Derive a state transition table
2. Make a timing diagram starting from the state $Q_1=1$ and $Q_2=1$ and complete at least 5 transition cycles. (Graph provided on next page)
3. Make a state diagram.

State Transition Table

<table>
<thead>
<tr>
<th>Q_1</th>
<th>Q_2</th>
<th>Q_{new}</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>10</td>
<td>00</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>11</td>
</tr>
</tbody>
</table>

Timing Diagram

- $Q_1 \rightarrow J_1 = K_1 = 1$ so
 - Toggle on each count
- $Q_2 \rightarrow$ Toggle on 5 of Q_1, so look where Q_1 transitions from $0 \rightarrow 1$
 - $K = 1$ so 1
 - $Q_1 = 1$, $J_2 = 1$
 - Toggle
 - $Q_1 = 0$, $J_2 = 0$
 - Clear (reset)

State Diagram

- From 00 to 01
- From 11 to 10