Use Maple to row reduce the augmented matrix:
\[
\begin{pmatrix}
1 & -\alpha & b_2 \\
0 & 2-\alpha^2 & 1-\alpha^2 & b_2 - b_1 \alpha \\
0 & 0 & p(\alpha) & g(\alpha, b)
\end{pmatrix}
\]

Set \(p(\alpha) = 2 - 2\alpha^2 - \alpha + \alpha^3 = 0 \) to obtain \(\alpha = 1, \alpha = -1, \alpha = 2 \), the values that make \(A \) singular. Substitute these \(\alpha \) values into \(g \): \(g(1, b) = b_3 - b_1 \), so \(A\hat{x} = \hat{b} \) has a solution if and only if \(b_3 - b_1 = 0 \). Similarly, for \(\alpha = -1 \), we obtain \(b_3 + 3b_1 + 2b_2 = 0 \), and for \(\alpha = 2 \), we get \(b_2 - 3b_3 = 0 \).

1.5.15 If \(\text{rank} \ A = n \) then \(A\hat{x} = \hat{0} \) has at most one solution.

Equivalently, if \(A\hat{x} = \hat{0} \) has more than one solution, then \(\text{rank} \ A < n \).

a) \(A \hat{0} = \hat{0} \) and \(A \begin{pmatrix}
1 \\
0 \\
\vdots \\
0
\end{pmatrix} = \hat{0} \).

b) \(A \hat{0} = \hat{0} \) and \(A \begin{pmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{pmatrix} = \hat{0} \). Since \(c_i \neq 0 \) for some \(i \), we have two distinct solutions to \(A\hat{x} = \hat{0} \).