CHEM 114: General Chemistry II (3 Hours) SPRING 2013
South Dakota School of Mines and Technology
Chemistry/Chemistry Engineering Building, Room C228
Time: MWF: 8:00-8:50 AM
(Subject to modification)

INSTRUCTOR: Justin P. Meyer Office: Chemistry and Chemical Engineering 122
Phone: 394-2431
Email: Justin.Meyer@sdsmt.edu

Office Hours: MWF 9-10:45 am

Course Description: An introduction to the basic principles of chemistry for students needing an extensive background in chemistry. A continuation of CHEM 112.

Course Prerequisites: CHEM 112 and MATH 102.

Instructional Methods: The course will be taught primarily using power point lectures. Access to the power points for the course can be found on the course web site on D2L, and it is recommended that students have these available during lectures in either paper or electronic form. Evaluation will be done primarily electronically through D2L through the use of internet quizzing as well as paper exams. Homework will be given using the WileyPlus internet site.

REQUIRED TEXT AND EQUIPMENT:
2. Scientific Calculator. (Cell phones may not be used for this purpose)
3. Tablet PC or Laptop PC that can access the internet in class.

COURSE WEB SITE: Course materials and grades will be posted to the course web site at: https://d2l.sdbor.edu/index.asp

If you can’t access this site you need to contact your instructor as soon as possible. The quiz tool on D2L will also be utilized for evaluation purposes in class. Also remember that the grades posted to this web site are not the ‘final’ grades but are meant to serve as information for the student. Grades from the instructor’s grade book are the final grades. That being said, if you see a grade that doesn’t appear correct on D2L, you should contact the instructor to verify the grade.

COURSE POLICIES
Attendance: Attendance at lectures is expected.
Assessment/Grading: Your grade for the course will be based on a total possible score of 500 points, calculated as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>50</td>
</tr>
<tr>
<td>Homework</td>
<td>50</td>
</tr>
<tr>
<td>Six Hour Exams Scores:</td>
<td>300</td>
</tr>
<tr>
<td>Final Exam Score:</td>
<td>100</td>
</tr>
<tr>
<td>Total:</td>
<td>500</td>
</tr>
</tbody>
</table>

A: 90% B: 80% C: 70% D: 60% F: <60%

These levels may change, but they will not increase.
Hour Exams: Six 1 hour exams of will be given during this course each scaled to 50 points for a total of 300 possible points. Exams will be given using scan forms. **For exams, you need to bring your own calculator and a pencil. Make up exams will not be given.** If you know you will be missing an exam you need to contact your instructor prior to the exam to schedule a time to take the exam. If participation in a school-sponsored activity requires you to be absent on the day an exam is scheduled, you are required to take the exam prior to leaving on the activity. Arrangements to do so must be made with me, via email, a minimum of one week in advance of the exam date.

Final Exam: The final exam for the course (100 possible points towards course grade) will be comprehensive and will be given on Thursday, May 2nd at 11:00 am. It will be a comprehensive exam. If you must miss the final exam for an excusable reason (e.g., illness requiring medical treatment, death in immediate family) the instructor will schedule a make-up final exam prior to the scheduled final exam time.

Quizzes: Quizzes will be given unscheduled, and possibly unannounced. For each quiz a paper copy will be available for cases in which students have computer issues. Students who repeatedly have computer issues may be see their quiz scored docked. Three quiz scores can be dropped during the period of the course. **Quizzes missed for any reason cannot be made up and will be given a grade of zero.**

The average of a student’s quiz scores will be given a percentage and that will be converted to points toward your final grade out of 50 points (example: 90% \rightarrow 45 points).

Homework: You will also be given frequent homework assignments that will be completed electronically on WileyPlus. These homework scores cannot be dropped. It is your responsibility to check WileyPlus for assignments and announcements pertaining to class. The average of a student’s homework scores will be given a percentage and that will be converted to points toward your final grade out of 50 points (example: 90% \rightarrow 45 points).

Course Objectives: Students will obtain a foundation in the fundamental principles and models of chemistry necessary for an understanding of the composition, structure, and properties of matter and the changes that matter undergoes.

Course Outcomes:

- Understand rates of reaction and conditions affecting rates.
- Derive the rate equation, rate constant, and reaction order from experimental data.
- Use integrated rate laws.
- Understand the collision theory of reaction rates and the role of activation energy.
- Understand basic reaction mechanisms and identify intermediates and catalyst.
- Understand the nature and characteristics of chemical equilibria.
- Understand the significance of the equilibrium constant, K.
- Understand how to use the equilibrium constant in quantitative studies of chemical equilibria.
- Understand and use Le Châtelier’s Principle in predicting the effects of stresses on equilibrium systems.
- Use the Bronsted-Lowry and Lewis concepts of acids and bases.
- Understand the difference between strong and weak acids in aqueous solutions.
- Be able to relate pH to hydronium and hydroxide ion concentrations.
- Apply the principles of chemical equilibrium to acids and bases in aqueous solution.
- Understand the control of pH in aqueous solutions with buffers.
- Evaluate the pH in the course of acid-base titrations.
- Apply chemical equilibrium concepts to the solubility of ionic compounds.
- Understand the concept of entropy and how it relates to spontaneity.
- Use tables of data in thermodynamic calculations.
- Define and use free energy in predicting the spontaneity of chemical processes.
- Be able to apply free energy to equilibrium concepts.
- Balance net ionic equations for oxidation-reduction reactions.
- Understand the principles of voltaic and electrolytic cells.
- Understand how to use electrochemical potentials.
- Be able to apply electrochemical potentials to free energy and equilibrium concepts.
- Be able to calculate energies for nuclear reactions.
- Be able to balance nuclear equations.
- Be able to predict methods of nuclear decay.

Incomplete Grades (INC): According to University policy, the grade of INC may be assigned at the discretion of the instructor when a student, for good reason (e.g., serious health problems) has not completed a portion of the work for the course while the rest of the work for the course has been satisfactorily completed. Therefore, except for extenuating circumstances, a grade of incomplete will only be assigned to students who are earning a grade of C or better. When the incomplete is granted, the instructor will stipulate what work is required to complete the course and a deadline for completion of that work; grades for all of the student’s work completed before assignment of the incomplete, in combination with the work completed after the assignment of the incomplete will be used to complete the final grade for the course.

ADA Statement: Students with special needs or requiring special accommodations should contact the instructor, (Justin Meyer at 394-2431) and/or the campus ADA coordinator, Jolie McCoy, at 394-1924 at the earliest opportunity.

Freedom in learning. Under Board of Regents and University policy student academic performance may be evaluated solely on an academic basis, not on opinions or conduct in matters unrelated to academic standards. Students should be free to take reasoned exception to the data or views offered in any course of study and to reserve judgment about matters of opinion, but they are responsible for learning the content of any course of study for which they are enrolled. Students who believe that an academic evaluation reflects prejudiced or capricious consideration of student opinions or conduct unrelated to academic standards should contact dean of the college which offers the class to initiate a review of the evaluation.

My version of Electronic Devices Policy: Please turn off your cell phone before class starts. No text messaging in class. No headphones. If you wish to use a laptop in this class for purposes of note taking, that’s great, but if you are caught playing games or browsing ‘noneducational’ web sites you will be asked to leave, with multiple violations resulting in dropping of a letter grade for the course. You will not be able to use a cell phone for a calculator on exams and quizzes. During the class lecture I am requesting that you have your screens locked in the down position if you prefer to use your tablet during class. Tablets or laptops are going to be used for the class. If a student chooses to use their own laptop and not be part of the tablet program it is their responsibility to make sure that their computer can access the internet in the classroom and have any programs needed installed on their computer. The instructor will not provide any tech support or give exceptions for computer problems for those that are not part of the tablet program.
Academic Honesty: *We will not tolerate any cheating as defined by the student code of conduct (http://sdmines.sdsmt.edu/sdsmt/studentconduct/main).* Cases of cheating will be handled on a case to case basis as defined in the student code of conduct. From my experience, the use of technology in evaluations can make it very tempting to use various methods to cheat. Keep in mind that with this technology comes more freedom, but there are also ways to monitor one’s activities, and you will be caught.

TENTATIVE LECTURE AND EXAM SCHEDULE
EXAM DATES ARE SUBJECT TO CHANGE!

<table>
<thead>
<tr>
<th>Exam</th>
<th>Chapter(s) *</th>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>14</td>
<td>Monday, January 28<sup>th</sup></td>
</tr>
<tr>
<td>Exam 2</td>
<td>15,16,17</td>
<td>Friday, February 15<sup>th</sup></td>
</tr>
<tr>
<td>Exam 3</td>
<td>17</td>
<td>Friday, March 1<sup>st</sup></td>
</tr>
<tr>
<td>Exam 4</td>
<td>18,19</td>
<td>Friday, March 22<sup>nd</sup></td>
</tr>
<tr>
<td>Exam 5</td>
<td>20</td>
<td>Monday, April 8<sup>th</sup></td>
</tr>
<tr>
<td>Exam 6</td>
<td>21,22</td>
<td>Friday, April 26<sup>th</sup></td>
</tr>
<tr>
<td>Final Exam</td>
<td>14-22</td>
<td>Thursday, May 2<sup>nd</sup></td>
</tr>
</tbody>
</table>

* Approximate schedule of chapters covered in that exam