Syllabus

Textbook:  

Class Time and Location:  
Monday, Wednesday 11:00 – 11:50 AM, in EEP 252

Course Instructor:  
Dr. Vladimir Sobolev

Office, office hours:  
222 EEP;  M, W, F 4:00 – 6:00 PM;  T, Th 2:00 – 5:00 PM

Phone, E-mail:  
394–1225;  Vladimir.Sobolev@sdsmt.edu

Course Web site:  

Prerequisites:  
PHYS 211.

Internet access is required for this course. All homework must be completed and will be graded on-line. Registration on the homework website is required. Go to:

http://edugen.wiley.com/edugen/class/cls18263/ and select “Register for this class now”.

NOTE:

Students with special needs or requiring special accommodations should contact the instructor, Dr. V. Sobolev, and/or the campus ADA coordinator, Jollie McCoy, at 394-1924 at the earliest opportunity.

Grade Structure:

<table>
<thead>
<tr>
<th>Points</th>
<th>Grade</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>A</td>
<td>85 – 100</td>
</tr>
<tr>
<td>100</td>
<td>B</td>
<td>84 – 70</td>
</tr>
<tr>
<td>150</td>
<td>C</td>
<td>69 – 55</td>
</tr>
<tr>
<td>TOTAL</td>
<td>D</td>
<td>54 – 50</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>49 – →</td>
</tr>
</tbody>
</table>

HOUR EXAM | DATE | TIME
---|------|---|
EXAM I | Tuesday, February 14 | 11:00 a.m.
EXAM II | Tuesday, March 21 | 11:00 a.m.
EXAM III | Tuesday, May 2 | 11:00 a.m.

*Quizzes will not be announced beforehand and may be given in both lecture and recitation periods.  Students are responsible for taking the exams when scheduled. Anyone missing an exam without prior approval and arrangement with Dr. Sobolev, or certifiable medical reasons, will be assigned a zero grade for the exam in question.  Take home tests and quizzes will not be announced beforehand and will be given during the lecture class. Attendance of lectures is compulsory. Nonattendance of lecture classes will lead to significant reduction of the final grade.  The Final Exam will be a comprehensive exam on topics, which have received emphasis.

Everyone must take the final exam.

COURSE PHILOSOPHY:
The idea of this course is to offer a logical presentation of the basic concepts and principles of electricity and magnetism, and to strengthen an understanding of concepts and principles through a broad range of applications to the real world. To meet this goal, the emphasis is placed on sound physical arguments, problem solving methodology as well as numerous examples of use of electricity and magnetism principles in contemporary technology, physical science and other disciplines, including engineering, chemistry, and medicine will be presented.

POLICIES

- The Recitation section is an integral component of the course. Students should attempt to work all assigned problems prior to a recitation so that they may obtain assistance on specific difficulties during the recitation. Attendance at recitation is very important.
- During each recitation, either a quiz will be given or homework will be graded. All homework must be completed and will be graded on-line. The quiz or homework will be graded for your weekly recitation score. No makeup quizzes will be given; no late homework will be accepted.
- Quizzes will be open book, with no notes or cards allowed; they will not be announced beforehand. Occasionally, the quiz will be selected from the assigned homework problems.
- Normally, all hour exams and quizzes will be returned in your recitation section.
- Hour exams will be a combination of problems and multiple-choice questions. The final exam will be multiple choice only.
- All exams, including the final, are open book. Only the standard course textbook is allowed. Student prepared note cards and sheets are not permitted. Calculators are permitted.
- All hour exams will be held on Tuesday mornings at 11:00 AM in the rooms EEP 208, 251A and 251B, 252, 253, 254.
- One-hour exam regular-problem solution should contain:
  - Statement of what is given;
  - Statement of what is to be found;
  - The solution with appropriate equations, pictures and graphs;
  - The necessary steps to show how the problem is solved;
  - If it is a numerical answer, it should be marked with appropriate units, usually to 3 significant numbers.
- There will be considerable grade reduction if any of the above elements are missing in a solution.
- The final exam will be comprehensive with some emphasis on material covered after Exam III.

Appeals for additional credit on exam problems:

Exam grades are determined by assigning credit based on the merit of the solution given. If you feel you should receive more points for a particular solution please use the following procedure.

1. Do not talk to the TA about it, talk to the instructor and submit.
   a) Your original test.
   b) A complete and correct solution of the problem in question.
   c) A brief description of why you think you deserve more credit for the solution on your exam.
3. See the professor one or two days after submission for return of your materials.
4. Appeals must be submitted within 10 working days after the graded exam is returned. There will be no second appeals.

ACADEMIC MISCONDUCT:

Any violation of academic integrity policy, such as cheating and plagiarism, will not be tolerated in this course. Penalties may range from a failing grade for the work in question to failure of the course.

THE EXPECTED OUTCOMES OF THIS COURSE:

As a result of this course students will be familiar with basic terminology, processes and fundamental laws in electricity and magnetism. Students will have an understanding of how the mathematical techniques of complex numbers, vector analysis, differentiation and integration can assist in formulating and solving physical problems.
and will then be able to use these techniques when studying other more-advanced courses in Physics. Student will have also further developed generic problem-solving skills, and scientific world-view.

_Students are expected to spend a minimum of six hours per week studying for every three hours spent in class. Students who spend the minimum time studying usually get the minimum grade._

**STUDENTS SUCCESSFULLY COMPLETED PHYSICS 213 WILL BE ABLE TO:**

- use SI units for electric and magnetic physical quantities; know non-system units used in electricity and magnetism;
- understand the basic concepts and laws of classical electrostatics and electrodynamics;
- quantitatively describe the forces between point charges; know major application of electrostatics and electrodynamics in modern technology;
- calculate the electric fields and electric potentials due to point charges and simple continuous charge distributions;
- understand the notions of capacitance and resistance, to find equivalent capacitances and resistances for capacitors and resistors connected in series and in parallel; know major application of capacitors and resistors in electric circuits;
- to apply the Kirchhoff's laws for calculations of multi-loop circuits;
- understand the phenomena taking place in circuits contain resistor and capacitor and how these phenomena are described by corresponding equations;
- calculate magnetic fields due to electric currents;
- understand the laws of motion of charged particles in uniform electric and magnetic fields or combined electric and magnetic fields and applications of these phenomena in modern science and technology;
- understand the laws of electromagnetic induction and their role in modern technology;
- improve ability to use mathematics and problem solving skills

**TENTATIVE LECTURE TOPIC SCHEDULE**

<table>
<thead>
<tr>
<th>WEEK OF</th>
<th>MONDAY</th>
<th>WEDNESDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 16 – 20</td>
<td>Introd. notes,</td>
<td>Chapter 21, 22</td>
</tr>
<tr>
<td></td>
<td>Chapter 21, 22</td>
<td>Chapter 22</td>
</tr>
<tr>
<td>January 23 – 27</td>
<td>Chapter 22, 23</td>
<td>Chapters 23</td>
</tr>
<tr>
<td>January 30 – February 3</td>
<td>Chapter 22, 23</td>
<td>Chapters 23</td>
</tr>
<tr>
<td>February 6 – 10</td>
<td>Chapter 23</td>
<td>Chapter 23, 24</td>
</tr>
<tr>
<td>February 13 – 17</td>
<td>Chapter 24</td>
<td>Chapter 24</td>
</tr>
<tr>
<td><em>(February 14 – Exam I)</em></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February 20 – 24</td>
<td>Holiday</td>
<td>Chapter 25</td>
</tr>
<tr>
<td>February 27 – March 3</td>
<td>Chapter 25</td>
<td>Chapter 25, 26</td>
</tr>
<tr>
<td>March 6 – 10</td>
<td>Spring Break</td>
<td></td>
</tr>
<tr>
<td>March 13 – 17</td>
<td>Chapters 26</td>
<td>Chapter 26</td>
</tr>
<tr>
<td><em>(March 20 – Exam II)</em></td>
<td>Chapter 27</td>
<td>Chapter 27</td>
</tr>
<tr>
<td>March 20 – 24</td>
<td>Chapter 27, 28</td>
<td>Chapter 28</td>
</tr>
<tr>
<td>March 27 – 31</td>
<td>Chapter 28</td>
<td>Chapter 29</td>
</tr>
<tr>
<td>April 3 – 7</td>
<td>Chapter 29</td>
<td>Chapter 29, 30</td>
</tr>
<tr>
<td>April 10 – 14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
April 17 – 21  
April 24 – 28  
May 1 – 5  
(May 2 – Exam III)  
May 8 – 12  

<table>
<thead>
<tr>
<th>Homework Assignments</th>
</tr>
</thead>
</table>
| **Chapter 21:** Questions: 1, 2, 4, 6, 10  
Problems: 4, 9, 13, 15, 17, 23, 24, 25, 26, 27, 47, 53, 59, 65, 66  |
| **Chapter 22:** Questions: 1, 2, 4, 5, 7, 9, 11  
Problems: 9, 12, 17, 19, 22, 24, 25, 27, 29, 30, 31, 34, 35, 37, 39, 50, 51, 53  |
| **Chapter 23:** Questions: 1, 3, 4, 6, 8, 9  
Problems: 1, 2, 4, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 28, 31, 32, 34, 35, 37, 39, 43, 45  |
| **Chapter 24:** Questions: 1, 3, 7, 9, 11  
Problems: 5, 7, 9, 13, 15, 17, 19, 20, 21, 23, 25, 27, 30, 31, 33, 37, 39, 41, 45, 53, 54, 56  |
| **Chapter 25:** Questions: 1, 3, 7, 9, 11  
Problems: 3, 5, 7, 11, 12, 13, 15, 17, 19, 21, 23, 24, 25, 27, 30, 32, 35, 36, 37, 39, 40, 74  |
| **Chapter 26:** Questions: 1, 2, 3, 5, 10  
Problems: 5, 7, 11, 13, 15, 17, 18, 19, 21, 23, 27, 29, 30, 31, 32, 35, 37, 39, 40, 41, 54, 55  |
| **Chapter 27:** Questions: 3, 5, 7, 9, 11  
Problems: 5, 8, 9, 11, 15, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 45, 47, 49, 50, 55  |
| **Chapter 28:** Questions: 1, 2, 5, 7, 10  
Problems: 3, 7, 9, 12, 13, 15, 19, 23, 25, 28, 30, 33, 35, 37, 39, 40, 43, 47, 49, 51  |
| **Chapter 29:** Questions: 1, 3, 4, 8, 9  
Problems: 4, 7, 11, 12, 13, 15, 18, 20, 23, 29, 30, 33, 36, 37, 38, 39, 41, 43, 45, 47, 49  |
| **Chapter 30:** Questions: 1, 3, 5, 7, 10  
Problems: 3, 7, 10, 11, 15, 17, 18, 21, 24, 27, 29, 33, 35, 37, 38, 39, 42, 44, 49, 51, 53, 55, 59, 61, 63, 65, 67  |
| **Chapter 31:** Questions: 1, 3, 5, 7, 11  
Problems: 3, 5, 9, 10, 15, 17, 21, 25, 27, 29, 31, 33, 35, 37, 39, 41, 47, 51, 53, 57, 59, 61, 63  |

**FINAL EXAM WEEK**

**FINAL EXAM**  
May 12, 4:00 – 5:50 p.m. in EEP 252