Essentials

- Math 125, Calculus II
 SDSMT, Fall 2006, 4 credits
- Section 3 meets Monday, Tuesday, Wednesday, and Friday from 12:00–12:50 PM in EP 208.
 Section 5 meets Monday, Tuesday, Wednesday, and Friday from 3:00–3:50 PM in McLaury 313.
- The course text is Calculus (eighth edition), by Larson, Hostetler, and Edwards. We will cover Chapters 5, 8, 9, 10, and 11.
- A tentative course outline can be found on the class webpage.

Instructor information

- Dr. Travis Kowalski (either “Travis” or “Dr. K” is fine)
- Office: McLaury 314D
 Phone: (605) 394-6146
 Email: travis.kowalski@sdsmt.edu
- Webpage: http://www.mcs.sdsmt.edu/tkowalsk/
- Office hours: Monday through Friday from 2:00-2:50 PM, Thursdays at noon, and Fridays at 11:00 AM. Or, as always, you can make an appointment with me; just contact me by email or after class.

Course objective and description. Calculus II is a continuation of the study of calculus, including the study of sequences, series, polar coordinates, parametric equations, techniques of integration, applications of integration, indeterminate forms, and improper integrals.

Prerequisites. There are two:

1. Trigonometry: A Math 120 grade of “C-” or better, or an acceptable score on the COMPASS test.
2. Calculus I: A Math 123 grade of “C-” or better.

You may not enroll in both Math 125 (Calculus II) and Math 120 (Trigonometry) simultaneously.

Technology. The demanding nature of the material, as well as an appreciation of its use in engineering and science disciplines, more or less requires the use of technology. All students have access to a powerful “computer algebra system” called Maple, which can be accessed from any campus computer, and I will illustrate its use daily in class and through occasional computer labs.

A graphing calculator, while not required, is certainly useful for homework. Virtually any kind of graphing calculator should be suitable for this course, though Texas Instruments are typically the easiest to use. The “unofficial” Math department recommendation is the TI-89, although the TI-83 and TI-84 are also good choices.

Grading. The grading is based on the following:

- Assignments: 200 points
- 3 midterm exams: 100 points (each)
- 1 final exam (December 14, 1:00–2:50 PM): 200 points

Letter grades will be assigned according to the following scale:

- A: 630-700 points
- B: 560-629 points
- C: 490-559 points
- D: 420-489 points
- F: less than 420 points

Plus or minus grades are not allowed (Board of Regents policy, Fall 2003). I reserve the right to lower these values as I see fit.
About the class

Math 125, Kowalski

Instruction and attendance. Class will mostly take the form of lecture and discussion. Your daily attendance is expected, though not required. I will not take role, nor will I note frequent absences: I’m not your mother. However, I will often have class assignments or activities for which no make-up will be allowed, as outlined below. I work strictly on the “you snooze, you lose” policy.

However, when you attend class, be sure you are on-time and ready to participate for the duration of class. I work hard at making class useful and informative for you, and will strive to make calculus, if not fun exactly, then at least engaging. Arriving to class late or attempting to pack up early are extremely disrespectful behaviors, both towards the instructor and to other students, and I have little patience for either. Further details about classroom behavior are outlined below.

Assignments. The only way to learn mathematics is to do mathematics. As a result, I will challenge you with frequent assignments, in class and out, to help you develop skill and proficiency with calculus. Assignments will come in three flavors:

- **Classwork.** As indicated above, in class we will have brief, unannounced activities to be turned in during class. No make-ups will be allowed for such assignments, so keep this in mind should you choose to miss class.

- **Homework.** I will assign homework problems for you to work on every day in class, which I expect you to work on in a dedicated “homework notebook,” either on your Tablet or on paper. These problems will give you the best training in the mechanical aspects of the course, and are one of the ways I can gauge how much effort you are putting into the course.

 I will not, however, collect all of these problems. Instead, each Tuesday in class (and on the web) I will post 4-5 problems from those previously assigned. These problems are to be written up and submitted the following morning in class. I will drop the lowest homework score from the grading.

- **Projects.** During the semester we will have occasional written projects, extended assignments, or computer labs, designed specifically to give you exposure to working with the calculus concepts from class in cooperative group settings and dealing with more real-world based applications. These projects will be announced in class well ahead of their due dates.

Any homework assignment or written project is to be turned in on standard $8\frac{1}{2} \times 11$ inch paper. Do not submit homework on ripped-out spiral notebook paper or I will not grade it. Write only on one side of the paper, as I will only grade the front side. If you have multiple sheets of paper, be sure they are stapled together prior to class, as I will only grade the first sheet of your homework otherwise.

As a general rule, late homework assignments or projects will not be accepted. I may accept late homework on an individual basis, but it will be penalized by a 50% reduction of points.

Examinations. There will be three hour-long examinations over the semester which will test your mastery of the course material. These exams are designed to test not only your ability to solve standard problems (such as basic homework problems), but also your ability to synthesize ideas and use your calculus skills in novel or extended ways. Examinations will be announced at least one week prior to the exam. Details regarding the exams will be made available as they approach.

Make-up exams. It is the your responsibility to check about missed class or examinations, especially when the problem is known previous to the absence. If you have an excused absence to an exam, then the final will be weighted more heavily to make up for the missed exam. Departmental policy prohibits final exams be given early, so plan your holiday travel accordingly.

Getting help. There are many resources available should you like or need additional help with calculus. Among the three most important resources are:

- **My office hours.** Make use of them. I’m more than happy to work with you on a more personal basis during office hours – heck, it’s my job! Check my webpage for my office hours this semester.

- **The Tech Learning Center.** Located in the basement of the Devereaux Library, fellow Tech students are willing and able to help you with basic math and calculus problems. You can make an appointment or just drop in when you have questions.

- **Math department tutors.** The Math Department keeps a list of SDSMT students willing to tutor students privately. You can contact these tutors and find a schedule that suits you best. Go to the department office in McLaury 308 to see this semester’s tutor list.

Special needs. Students with special needs or requiring special accommodations should contact the instructor and/or the campus ADA coordinator, Dr. Jolie McCoy, at 394-1924 at the earliest opportunity.
Most of these policies are common sense and are associated with being a responsible adult at an institution of higher learning.

Classroom behavior. The Student Handbook prohibits the disruption or obstruction of teaching. Activities that are disruptive and/or obstructive to teaching will include, but are not limited to, the following:

- **Showing up late to class.** While it is understandable that you might be a few minutes late to class there is a limit to how late one can be. As a general rule, it is acceptable for a person that is less than 5 minutes late to enter class. I ask that if you are more than 5 minutes late to class to refrain from entering class. You can always catch me after class if they need to see me.

- **Eating in class.** Your schedule may have classes that overlap your lunch hour, or don’t leave you time to eat during the day. Nevertheless, refrain from eating during class. Those with medical conditions that require special accommodations are certainly welcome to speak with me.

- **Electronic disruptions.** The use of cell phones, pagers, PDAs, non-SDSMT laptop computers, or any other associated electronics in class in prohibited. The best advice is to simply leave your electronic noisemakers at home or in your car. However, if there is some compelling reason why you require such a device then make sure your device is (at the very least) set to vibrate or (preferably) turned off. If an electronic device disrupts class then the owner will sacrifice their highest homework score for each offense, or pay The Fine. The Fine for electronic device disruption is the purchase of cookies and/or donuts for the entire class. This happens to be similar to a policy used at the state legislature.

Academic dishonesty. If you cheat on a test or assignment, you may fail the course. At the very least, you will get a negative score on that test or assignment since cheating is worse than doing nothing. Discussing a problem with other students is a valuable learning tool; copying someone else’s work is not. All students will be held to the institutional standard for academic honesty and integrity. The following are the relevant sections taken from the student handbook (SD BOR policy), which states that acts of academic dishonesty will include, but are not limited to, the following:

- **Cheating,** which is defined as, but not limited to, the following: (1) the use or giving of any unauthorized assistance in taking quizzes, tests, or examinations; (2) the use of sources beyond those authorized by the instructor in writing papers, preparing reports, solving problems, or carrying out other assignments; or (3) the acquisition, without permission, of tests or other academic material belonging to a member of the institutional faculty or staff.

- **Plagiarism,** which is defined as, but is not limited to, the following: (1) the use, by paraphrase or direct quotation, of the published or unpublished work of another person without full and clear acknowledgement consistent with accepted practices of the discipline; (2) the unacknowledged use of materials prepared by another person or agency engaged in the selling of term papers or other academic materials.

- **Dishonesty** relating to academic achievement, research results or academically related public service.

- **Furnishing false information** to any institutional official, faculty member or office.

- ** Forgery, fabrication, alteration, misrepresentation or misuse** of any document, record, or instrument of identification, including misrepresentations of degrees awarded or honors received.

State Policy on “Freedom in Learning.” Students are responsible for learning the content of any course of study in which they are enrolled. Under Board of Regents and University policy, student academic performance shall be evaluated solely on an academic basis and students should be free to take reasoned exception to the data or views offered in any course of study. Students who believe that an academic evaluation is unrelated to academic standards but is related instead to judgment of their personal opinion or conduct should contact the dean of the college which offers the class to initiate a review of the evaluation.

In the event of a sudden loss of cabin pressure, oxygen masks will fall from panels in the ceiling. Please place the mask over your nose and mouth and breath regularly. While the bag may not appear to inflate, oxygen will be passing through it. I have no idea why I included this, but if you read it, thanks for looking through this syllabus. Send me an email with the subject line “I read the syllabus!” and I’ll throw 5 extra credit points your way. Offer expires September 3, 2006.

Official policies. You can read the official Board of Regents student policies at

Student learning outcomes. This course is intended for students majoring in mathematics, physics, chemistry, engineering and related fields. It has three main objectives:

1. The student will continue to learn differentiation and integration techniques, building on the skills learned in Calculus I,
2. The student will learn basic concepts dealing with infinite sequences and series, and
3. The student will learn how to work with parametric equations and polar coordinates.

This course meets GenEd Goal #5: Students will understand and apply fundamental mathematical processes and reasoning. As a result of taking a course meeting this goal, students will:

- Use mathematical symbols and mathematical structure to model and solve real world problems.

 Assessment. Students will identify, interpret, and correctly apply standard mathematics symbols to solve problems requiring differentiation and integration techniques. This will be demonstrated on quizzes, labs, homework, and/or exams.

- Demonstrate appropriate communication skills related to mathematical terms.

 Assessment. Students will correctly use functional notation of algebra, trigonometry, and calculus. This will be demonstrated on quizzes, labs, homework, and/or exams.

- Demonstrate the correct use of quantifiable measurements of real world situations.

 Assessment. Students will apply their knowledge of calculus in one-variable, infinite sequences and series, and parametric equations and polar equations in applications such as area computation, function approximation, and arc-length computation. This will be demonstrated on quizzes, labs, homework, and/or exams.

A student who successfully completes this course should, at a minimum, be able to:

1. differentiate exponential and logarithmic functions and integrate the corresponding functions
2. differentiate inverse trigonometric functions and integrate the corresponding functions
3. appropriately use various integration techniques, including integration by parts and partial fractions
4. evaluate limits of infinite sequences, including how and when to use L'Hôpital's Rule
5. evaluate improper integrals
6. recognize common infinite series, including the geometric and harmonic series
7. appropriately use various tests for convergence of infinite series, including the Ratio Test, the Alternating Series Test, and Comparison Tests
8. determine the interval of convergence for a power series
9. use infinite series such as the Taylor Series or Fourier Series to approximate functions
10. convert between rectangular and parametric form, graph parametric curves, find derivatives, and do other calculus applications using parametric equations
11. convert between rectangular and polar coordinates, graph polar curves, and do calculus applications using polar coordinates

Official outcomes. Visit

- http://www.hpcnet.org/math_assessment/course_objectives